

TTThhheee NNNeeewwwbbbiiieeesss GGGuuuiiidddeee
TTTooo MMMaaakkkiiinnnggg SSSoooffftttwwwaaarrreee

The Newbies Guide To Making Software... 1 TThhe Ne Neewwbbiiees Gs Guuiidde Te To Mo Maakkiinng Sg Sooffttwwaarree

You Can Make Money in the Software Business ... 3

Step 1: How to Get Started: The Idea... 4
An Unlimited Marketplace – It’s Not Just Microsoft ... 4
Filling a Need – Or Defining One .. 4
Major Software Categories.. 4
Software for Individuals... 5
Software for Businesses ... 6
Before You Start Developing... 6

Step 2: How to Make Your Program – Or Get It Made For You 8
Major Development Languages and Tools.. 8

Java... 9
C.. 9
C++.. 9
PHP ... 10
Visual Basic ... 10
Perl .. 11
C#.. 11
Python ... 11
JavaScript.. 11
Delphi .. 12
SAS ... 12
PL/SQL.. 12
VB.net.. 13
Lisp.. 13
COBOL.. 13
Ada .. 13
Pascal.. 13

Page 1 of 1

ABAP... 13
Cold Fusion ... 14
Fortran... 14

Finding Programming Resources.. 14
Elance ... 15
Guru.com... 15
Rentacoder .. 16
Scriptlance... 16
Custom Software Development Companies.. 16

Step 3: Coding and Testing ... 17
Working with Programmers... 17
The Importance of Testing .. 18

Step 4: Finding Your Target Markets Online .. 19
Upload.com/Download.com .. 19
Selling Your Software.. 20

Supporting Your Software ... 22

Creating Your Software “Brand”... 24

Software Development FAQ .. 25
In simple English what are the basic steps for developing software?.............. 25
Explain what Open Source means?.. 25
Do I need to pay some kind of ongoing license fees for commercial
development products I use to make my software? .. 26
What do I need to worry about in terms of liability with my software? 26

Page 2 of 2

You Can Make Money in the
Software Business

We all know about Bill Gates – the richest man in the world. He made almost all
of his money with software.

As you look at all the fortunes made in software in the last 20 years, you may
have wondered how you could take advantage of that opportunity.

You can.

Maybe you hesitated because you don’t know much about programming.

Or perhaps you haven’t gone into the software business because you didn’t know
where to start, how to market your product, how to sell it.

This is all much easier today than ever before, and all you need is a good
software concept, and to know how to get your program built and marketed. We
can help.

The broadband revolution of the last few years has made designing, developing,
delivering and supporting software easier than ever before – and cheaper, too,
since you can skip a whole bunch of steps that used to be expensive (such as
packaging, printing manuals, traditional advertising, etc).

We’ll walk you through the basics, from concept to completion, helping you
develop your product idea, have it made and tested, how and where to sell it, and
how to work with the people you’ll probably be working with, like programmers.

By the end of this report, you’ll be ready to go start making money with software
right away!

To start making money with software you need to do four things: Develop
requirements (what you want to make and what it will do), code the requirements
or have them coded for you, test and improve the code, and sell the software!

Let’s think about each step now.

Page 3 of 3

Step 1: How to Get Started:
The Idea

The most important thing you need to have is a goal – in this case, what kind of
software you want to develop.

An Unlimited Marketplace – It’s Not Just Microsoft

There are tens of thousands of software products introduced each year by
developers large and small. These run the gamut from every kind of personal
entertainment product to utilities, to specialized business software of almost any
kind, to applications designed to super-charge or unlock special features of other
software or make them work better.

Actually not only is the majority of new software not developed by big companies
like Microsoft, almost all real software innovation is from smaller firms, since they
have the impetus and flexibility to be adventurous in their thinking and to move
quickly without layers of management, funding, and outside stakeholders causing
delays and offering opinions.

You may well not make billions with software, but software can be a fine
supplement to many kinds of online businesses.

Filling a Need – Or Defining One

Chances are if you are thinking about developing some software products, you
already have some idea of who you want to sell to.

While the possibilities are really only limited by your imagination, let’s take a
moment and think about major software buying audiences and major categories
of software by type that it can make the most sense for a small independent
developer to work on.

Major Software Categories

Page 4 of 4

There are a lot of ways to categorize all the kinds of software out there but here
are a few convenient, generally agreed-upon MAJOR categories. There are of
course dozens, if not hundreds, of specialized categories within them:

• Audio-Visual Software – such as music and video management tools
• Business Software – such as CRM and ERP tools
• Design and Photo Software
• Desktop Enhancements
• Developer Tools – software for making software
• Drivers – software to make software or hardware work
• Home and Education Software
• Internet Software – for getting more out of the Web
• IS/IT Software – for managing enterprise systems
• Utilities – specialized software that typically does one thing such as

spyware removal or registry management

Software for Individuals

Individuals buy a lot of software for fun, to keep their computers working well, to
organize information, for fun and entertainment and for other reasons. The
popular categories include:

• A/V Software – the popularity of digital music and video has created a
revolution in this area in the last couple of years

• Design and Photo Software – while businesses use many of these
products on the higher end, individuals buy the majority of simpler tools to
manage graphics

• Desktop Enhancements – mostly geared towards individuals, they add fun
and function to the computer experience

• Drivers – system-resident programs that make other programs and
hardware work together, though probably too technical an area to
experiment with for a novice development company

• Home and Education Software – by definition for the personal market
• Internet software
• Utilities – specialized small programs that perform a custom function.

Among the more popular in recent years would be programs that deal with
eliminating spyware and viruses; firewalls and other Internet security
functions; organization of large groups of files like photos, music, video
clips; file conversion programs to allow users to use different file types
with different programs; and much more.

Page 5 of 5

Software for Businesses

Businesses buy a lot of software, to keep their computers working well, to
organize information, to manage aspects of their businesses, for security, and
many other reasons. With businesses, bear in mind that the transaction methods
may be different and that you may need to consider more complex licensing
rules, which we’ll consider in the sections on selling and supporting your
programs.

The popular categories include:

• Business Software – by definition, for businesses of course! We’ll discuss
some of the major sub-categories below.

• Design and Photo Software – higher-end tools
• Internet software
• IS/IT Software
• Utilities – specialized small programs that perform a custom function. For

businesses, the most important utilities would have to do with keeping
computers safe (such as firewall, encryption, anti-virus, anti-spyware kinds
of programs) and specialized business functions, which will vary by the
industry.

While all businesses are different, most businesses have many common
business functions they need to perform, and today, there are software programs
– and software opportunities – to address these areas, especially for the small
and medium business marketplace.

Major business functions that benefit from software include applications, auction
tools, finance (including spreadsheets, tax programs, and more), presentations,
sales management, program and project management, legal and accounting,
add-ins and custom extras for major business programs like MS Office,
communication tools and much more.

Before You Start Developing

Even with the hints we’ll share, making software can be fairly expensive. Before
you get started, have in mind the following:

• What you want the software to do
• What you want the interface to look like
• What kinds of other products are on the market that are similar

Page 6 of 6

• What you plan to spend to have the software developed or “made”
• When you plan to make the software available

Great…now that you know what kind of software you want to make and sell, let’s
start thinking about how to do that!

Page 7 of 7

Step 2: How to Make Your Program
– Or Get It Made For You

The most “vexing” thing for many would-be software sellers is: comprehending
how to actually “make” the software. The good news is that in today’s world there
are a number of good choices for development, and even better, there are
thousands (maybe hundreds of thousands) of talented programmers who you
can hire for very little money.

Quality programming is now within reach of everyone because of these
“developments,” and you don’t even need to know how to program even slightly.
Did you know that Leo Fender, who developed the first practical electric guitar,
didn’t know how to play a note?

Major Development Languages and Tools

You don’t need to know what language is the most appropriate for your particular
software and you certainly don’t need to know how to do any programming
yourself, but you should be aware of the basic popular languages and software
tools – if only so you can make intelligent choices when working with
programmers and can “talk the talk” of programming even if you can’t, and don’t
need to, walk the walk so to speak.

There are basically 20 major active programming languages in the world today.
Not all of them are equally practical for every application but if you’re familiar with
this list you’ll be familiar with almost every general concept of language selection.

While about a third of the following are very unlikely to be used in your
development, we thought taking a couple of pages to touch on them would be
time well spent. The “top 20” list below comes from a November 2005 market
study of demand for programmers – meaning all of the following languages have
active projects, whether new developments or maintenance.

In order of approximate popularity by hiring of programmers, and with a quick
comment on typical uses for each, and the relative expense of development in
each based on what a typical contract programmer might cost:

Page 8 of 8

Java

Java is an object-oriented language developed by Sun Microsystems in the early
90s and intended as a replacement to C++.

Java is currently more popular than C/C++ mainly because of the percentage of
new application development that is Web oriented, Java having been developed
especially for online use. Anytime you see a page with “JSP” in its name that is a
page being served via Java.

Java is one of four major contenders if you are planning on building online
applications as opposed to desktop software or system utilities – the others being
PHP and Cold Fusion, as well as for some things, Perl.

(Note that JavaScript has nothing to do with Java, just to confuse everyone a
little more!)

Java programmers are readily available and there are more of them every day.

C

Developed in the early 70s by Bell Labs and consistently the most popular
microcomputer language for the last 25 years or more, C is powerful, simple, and
works well for both system software (for which is was originally designed) and
custom application development.

There are some technical limits to C – such as lacking object support – that make
other languages including C++ more flexible for certain kinds of applications.

C also “allows” programming that other more modern programming languages
will stop when compiling, which means C will let bad routines get through to
“final” versions of software if the programmer is not careful.

C programmers are extremely easy to find and accordingly not that expensive.

C++

Page 9 of 9

Addressing many of the limits of C while remaining almost (but not quite) fully
compatible with it, C++ adds classes, templates, namespaces and a host of other
features.

Also it is easy to find people with these skills and relatively inexpensive.

PHP

PHP is an open source object-oriented language for developing certain
applications, Web pages, and in a science-fiction-is-now-reality world, for
developing other software itself.

“PHP” technically stands for Personal Home Page which gives an indication of
what the developers had in mind, but PHP is now used much more broadly than
that, especially given its easy compatibility with every major database language
and many other programming languages as well as working on every major
operating system including Windows, Unix and the Mac.

Developers are finding more and more cool ways to use PHP every day.

PHP is a hot technology so it is in demand but it is also fairly easy to learn and
the licensing is less complex and expensive than many other development tools.

Visual Basic

VB is a major Microsoft update to BASIC, which was the original primary
microcomputer language in the 70s. VB adds rapid development, graphical user
interfaces, database compatibility and a host of other improvements to BASIC.

Being a Microsoft product ensures its ubiquity and popularity; indeed there are
about a dozen specialized versions of VB already in circulation.

The greatest strength and weakness of VB is its deliberate simplicity. This makes
developing in VB fairly fast and easy but some of the programming community
looks at it with disdain – not that you should care if it meets your needs!

If you see Web pages with “ASP” in the name, those pages are being generated
from a VBScript based Web site.

Page 10 of 10

VB programmers are easy to find, and a computer literate person can probably
do some development himself in VB without too much trouble.

Perl

Perl was developed by Larry Wall and is often called the “glue of the Web” since
almost any CGI script and many other features of Websites are the result of Perl.

Perl is not typically a language that would be used for an entire application but for
elements of that application and how it interacts, for example, with Web pages,
although (file under it’s a small world after all) PHP was originally written in Perl.

Perl has very powerful data handling capabilities and is popular in financial
applications for that reason.
Perl programmers are relatively more expensive than C/C++/VB programmers.

C#

“C Sharp” (not “C Pound Sign”) is an object-oriented language developed by
Microsoft as part of the .Net initiative, which makes it appropriate for online
applications and those intended to use standard .Net protocols.

Based on elements of Java and C++, we have not seen that many C#
programmers around, so in the short term expect relatively higher rates from
them if you decide to use this language for your software.

Python

Python is an open-source language developed in 1990 and very similar in
features and functions to Perl.

The last major update to Python was in September 2005.

JavaScript

Page 11 of 11

JavaScipt is an object-based scripting language developed by Nestcape, almost
exclusively for Web site development but it has other applications. JavaScript
remains extremely popular even though it has not had a major update in a couple
of years.

JavaScipt programmers are plentiful!

Delphi

Developed by Borland and originally a Windows-only version of Pascal with
object orientation, Delphi has been further extended to work with both UNIX and
Microsoft .net.

SAS

Now we have to get a little technical – SAS is a fourth generation database-
oriented programming language. In this regard it is very similar to SQL.

Ironically this format of language makes user programming easier than many
others (you could start building a database in SAS or SQL with a Dummies book
and a couple of hours) but it has limited use. SAS is primarily geared towards
mainframes. A Windows version is still supported, by the Mac is not.

Unless you’re planning on complex database products you probably won’t need
SAS.

PL/SQL

The other – and far more popular – fourth gen database-oriented language is
SQL, or “Structured Query Language.”

Having a long history going back to the mid 70s, SQL has many database
applications and is licensed by ANSI/ISO which makes it excellent for use in any
situation with those certifications are helpful (like in many industrial situations).

If you are thinking of a relational data component to your software, you’ll want to
do some more research on SQL.

Page 12 of 12

VB.net

The version of Visual Basic for the .Net platform standard.

Lisp

Lisp – short for “List processing” is the second oldest standard language in real
use today, having been developed in 1958.

COBOL

COBOL stands for “common business oriented language” and is a third-
generation programming language that remains in use where it was intended –
large administrative systems for big companies and government agencies.

You’re unlikely to care about COBOL unless you go after that market.

Ada

Developed in the 70s and most recently updated in 1995. Used almost
exclusively in military applications and military-like applications elsewhere, such
as in flight-control systems.

Pascal

Developed in 1970, Pascal was, among other things, the basis for the original
Macintosh operating system.

ABAP

Developed by SAP for use with its own software platform, ABAP has gone
through a couple of evolutions and is currently the key to developing SAP
applications for the Web via NetWeaver.

Page 13 of 13

If your software is intended to work with SAP, you will need ABAP programmers,
who are plentiful but very expensive ($1000/day is not uncommon). If you are not
working with SAP, you’ll never need to worry about ABAP.

Cold Fusion

Now an Adobe product (coming to them from Macromedia who acquired it from
original developers the Allaire brothers), Cold Fusion is a very popular tag-based
middleware development language used exclusively for websites and web
applications.

Cold Fusion can be made to do a wide variety of things from a software
standpoint, and anyone who is comfortable with HTML development will find Cold
Fusion pretty easy to learn.

Cold Fusion programmers are plentiful and as the learning curve is very low,
pricing should be competitive.

Fortran

Last, and oldest, of the programming languages Fortran was developed in the
mid 1950s by IBM for use in scientific computing, where it remains popular even
now. Originally a procedural language, an object-oriented version of Fortran was
recently released.

Finding Programming Resources

Once you have an idea of what you want your software to do and what it might
be “made of” you can start looking for programming resources.

The Internet makes this wonderfully easy.
We recommend starting with one of the major “freelance” Websites, which offer
several advantages over the open contract market or local body shops:

• Registration eliminates some low-end resources
• Feedback systems create positive work incentives and make picking

resources easier

Page 14 of 14

• Managed conversations and relationships through a third party add
security if desired

• Global resources will respond to your posting(s) allowing you to review
them at your convenience

• Much more competitive pricing than in most local markets
• Security of payments

There are dozens of “freelance” websites out there, but there are two that pretty
much own the space, and we have used both and can recommend them. These
are Elance and Guru.com.

Those sites feature many more than just programming resources. For coders
exclusively, we recommend two more sites, Scriptlance and Rentacoder.

Elance

Elance (http://www.elance.com) is a well-established eBay style site that attracts
a wide variety of freelancers in technical and other areas. All fees are paid by the
vendors, so as a client, the whole experience is free.

A large percentage of the programming resources you will find on Elance are
“offshore,” i.e. in India or elsewhere. While we strongly discourage using offshore
resources for work like ghostwriting, we encourage you to work with foreign
programming resources if their skills are a true match, there is no language
barrier, and you are especially focused on keeping costs down.

Guru.com

A newer and in many ways better version of Elance, Guru.com
(http://www.guru.com) asks more of its users both on the vendor and buyer
sides, has several systems in place to make fraud less likely, and seems to
attract a higher caliber of vendor as well as higher budget and higher quality
projects.

If you are looking for developers who can really help spec as well as design and
build your software, don’t overlook Guru.com, which is also a great place to look
for marketing and other resources you might need once you have the software
finished.

Page 15 of 15

http://www.elance.com/
http://www.guru.com/

Rentacoder

Rentacoder, as the name suggests, is a well-established resource for finding
highly skilled programmers fast. More geared towards solving specific problems
with specific skill sets, we recommend Rentacoder but the novice developer may
find it less “user friendly” than some of the other sites. With favorable coverage in
The Wall Street Journal and elsewhere, we think Rentacoder is a good reliable
resource that also, like Guru.com, offers and encourages escrow payments.
Rentacoder also offers some good general buying information, much of which
can be found here:

http://www.rentacoder.com/RentACoder/SoftwareBuyers/FAQ.asp

Scriptlance

Scriptlance features a confusing bare-bones interface
(http://www.scriptlance.com) but offers a programming-only job board that seems
to have something of an “insider” feel to it. If the sophistication of the Elance or
Guru systems doesn’t appeal to you, this might be a great place to programmer
shop.

Custom Software Development Companies

There are plenty of companies you can work with to develop your software from
beginning to end – this may be a better than sourcing freelancers, in some
situations.

If you do a Google search on “software development” several dozen companies
in this field will come up, and with them you can go with a concept and they’ll
make it happen – though much less cost-effectively than solo coders, of course.

Regardless of where you find your resources, you’ll want to be careful and
specific in how you work with them.

Page 16 of 16

http://www.rentacoder.com/RentACoder/SoftwareBuyers/FAQ.asp
http://www.scriptlance.com/

Step 3: Coding and Testing
Working with Programmers

Programmers come in all varieties – not just of experience and skills but of
personality types and styles.

Think about the kind of people you want to work with:

• Do you know exactly what you want and plan to give explicit directions?
• Do you want to “copy” something that exists in the marketplace and

enhance it? This is common and many programmers are happy to do it,
just be careful you don’t use code (and they don’t use code) illegally

• Do you want idea and concept input?
• Et cetera

Be as explicit as you can be in what you write in your ads, but bear in mind that
the ads are publicly viewable so if you have “secret” or proprietary ideas consider
how much you want to post; save some for a private discussion.

In terms of qualification, some programming skills require certifications to
suggest real competence and others less so. Microsoft certification is usually a
good indicator of skill in their platforms, Java and Perl coders often have no such
“documentation” for example.

When actually contracting with programmers, be clear about the following:

• Exactly what they will do and when
• Exactly what you will pay and when
• Who provides what – for example, some coders have their own

development environments and some will expect you to provide
something

• Who owns what – make certain that all work is done on a “work for hire”
basis which means you own the final product exclusively

• Make certain that all coding being done for you is being done legally,
which means both (a) using legal versions of licensed software and or (b)
using open source products and or (c) not directly copying copyrighted
code from a third party source, where that issue applies.

Page 17 of 17

In terms of payment, we recommend using an escrow service where that is
practical, and using an electronic service in any case. Most freelancers are used
to a starting payment and a completion payment, but payment in phases or thirds
for longer projects is not uncommon.

Some programmers are entrepreneurial and will suggest some form of “works
now pay later” scheme, a form of equity in your product. While in some cases this
may make sense for everyone, as a general rule we prefer the clean simplicity of
pay as you go.

The Importance of Testing

All software needs to be tested at several points during its development both for
functional integrity and also to make certain that the people who will be using the
software will be comfortable using it.

There are a lot of specific methods and means of testing – in these pages we can
only underscore its basic importance to any software project!

Once you know what to build and how to get it built, and you have a working
product, you’ll want to start marketing it!

Page 18 of 18

Step 4: Finding Your Target
Markets Online

Depending on who is the intended market – all home PC users on the one hand,
a specialty business clientele perhaps on the other – you can find customers a
number of ways.

First you will have your own contacts. Use them!

Then you can use low-barrier-to-entry sales channels like eBay (see our report
on eBay for getting started).

You can and should send your software to relevant online journalists to consider
reviewing and writing up – especially if you are focused on a special industry or
region where a large percentage of people are likely to read the same things. In
the paper industry for example there are only about four or five magazines
everyone reads, so a review in one of them is likely to get a tremendous amount
of attention.

You can also post free or trial versions of your software on the major websites
people use to find such items, and let the market find you.

While there are many places to do this, one of the best was and remains CNET’s
Download.com (http://www.download.com).

If you visit and look at the download statistics, the numbers can be staggering –
there are products with download numbers in the tens of millions! Of course there
are also some with numbers in the thousands or less.

The way to get your software onto Download.com?

Upload.com/Download.com

Why, logically enough, Upload.com (http://www.upload.com)!

CNET makes it very easy to participate and you can choose from a combination
of four programs to list your software.

Page 19 of 19

http://www.download.com/
http://www.upload.com/

1. Listing Packages – multiple levels of listing and posting privileges for your
software ranging from free to “basic” and “premium” options. Basically you
select a package, pay a monthly or annual fee, and agree to a revenue
share with them much like a sales commission.

2. Merchant Services – an enhancement to your listing package(s) this
enables ecommerce and other useful things to make your software
commercially viable online. As of November 2005 CNET charges a flat 8%
for a wide variety of powerful tools.

3. Pay Per Download – borrowing a model you may be familiar with from
Google’s AdSense and similar programs, this is a way to “compete”
though bidding for a Top 5 or Top 10 position, ensuring higher visibility
and more downloads.

4. Button Program – a way to link your sites and potentially others’ sites
directly to your product listings on Download.com.

While there are many competitors to Download.com none get anywhere near the
traffic, and CNET has become a major “review” brand unto itself (look at software
boxes the next time you’re in the store – plenty of them tout high-star ratings from
CNET).

Selling Your Software

If you use a system like Download.com to distribute your software you can
handle purchasing directly through them.

If not, or if you have other reasons to use a separate payment system, you can
sell software directly, through various third parties, through a PayPal store, on
eBay and other auction sites, or by placing ads in publications (online or off) that
are likely to reach your intended audience.

If your software works with something else or is an add on to something else, you
could explore creating an OEM (“original equipment manufacturer”) relationship,
where your product would be bundled with others. On a per sale basis the
compensation will be much lower than the retail market but volume can easily
make this a more profitable route for the right kinds of software.

Regardless of how you choose to sell, remember that software is a product sale,
so be sure to take into consideration sales tax, particularly if you are delivering
the software to the same state in which you reside or have your business entity
registered.

Page 20 of 20

Talk to your tax professional for more information.
Once you have your initial software out there, you’ll need to think about support –
how much to offer – whether to offer – whether to charge for it. This is a critical
issue in software and worth some time to think through.

Page 21 of 21

Supporting Your Software
Even if you don’t plan a huge call center in India, most software needs updating.
Most software needs to offer some technical support. Think about whether your
product will need either or both and then think about the best way to offer them in
a way that keeps your product profitable.

We know a database company that built its database platform in Corel Paradox
in about 1990.

Paradox is a very old-school system that you may not even have heard of, but it
does what it does well. The key to this product is the data, which is updated
regularly on a subscription model, not the interface, which has been updated
twice in 15 years and may never be updated again. As long as it works, the
clients in this case don’t care.

In this case, Corel licensing (for the runtime version every buyer of this database
needs) is dirt cheap. Paradox is rock solid and pretty much always works, even if
its feature set is very old and clunky under the skin.

So this company is in fact selling information, not a “software product” though it is
sold and licensed as both.

With more than 200 customers their support staff is a single person who handles
phone and email inquiries but is also updating the data continually. The software
support costs, by leveraging a solid, unfashionable, database system that only
works on DOS/Windows machines are kept exceedingly low.

These particular answers may not work for you, but whatever your market,
customer base, and product requirements might be, think about these issues:

• Will the software do forever what it does now, or does it address a
changing need?

• If the need changes, does it change yearly, every five years, or some
other timeframe?

• How easy is it for a reasonable average computer user to install and use
the software?

Have a plan for what you think your market will require, and solve as many
problems in advance as you can.

• Thoroughly test and debug your software

Page 22 of 22

• Distribute an early aka “beta” version to some real users and get their
feedback for the final release (buttons that make sense to you and your
programmer might not make sense to them)

• Use a good installer program that does everything automatically – XP and
Mac users now expect “smart” installation, and this is not a corner we
recommend cutting

• State what your support policy is and stick with it – if its email only with a
24 hour response, say so, and everyone will be happy!

Page 23 of 23

Creating Your Software “Brand”

Put some time into thinking about what to call your software, and whether you
plan to expand on it later. While software that meets a real need is essential, and
it has to work, it should have some branding to it – and try to be unique while still
getting the idea across.

In the area of system maintenance for example, we have found no less than 20
products with the word “mechanic” in their names, from at least eight publishers.
So do you find a way to use the word mechanic? We say no. You’ll never
standout, but you could try expanding the metaphor – Software Pit Crew for
example.

If you have big plans, you may want to work with some branding or marketing
resources – you can find plenty of them on Elance and Guru as well.

Page 24 of 24

Software Development FAQ

While there is no way a short report could fully equip you to become the next Bill
Gates, we want you to recognize that these days making software is easy to do,
easy to market, and you don’t really need to know much about programming to
do it.

The following are the five most common questions we have been asked recently.

In simple English what are the basic steps for developing
software?

There are four essential steps no matter how you look at it:

1. Define requirements – what you want to make and what it will do
2. Develop code to meet those requirements
3. Test the code, debug/fix/enhance it
4. Distribute or deploy the finished software product

Explain what Open Source means?

Open Source refers to a broad-based approach to software development and
distribution that began in the 1960s and took the form we think of today starting
around 1985, then more emphatically in 1998. As the Free Software Foundation
put it 20 years ago Open Source software is “free as in free speech and not free
as in free beer,” though in many respects elements of many open source
platforms are in fact free in the latter economic sense as well.

Open Source means the source code for a piece of software is readily available
for free.

As a general proposition, if you can develop your software using Open Source
tools and standards instead of commercially licensed ones, you will have lower
development and licensing costs, though these relationships can get complicated
and in many cases open source software is only financially “free” to individual
users, not commercial ones.

Page 25 of 25

There is also a strong anti-commercial – or at least anti BIG commerce – thread
through the open source movement.

Pepsi and Coca Cola consider their “secret” recipes the most valuable things
they have, but meantime, some wise guys called Open Cola have reverse-
engineered their drinks and posted recipes that result in startlingly similar
beverages…

Do I need to pay some kind of ongoing license fees for
commercial development products I use to make my software?

Generally, no, unless you actually use pieces of someone else’s software within
your own – such as the runtime version of Corel Paradox we mentioned earlier,
which has to be licensed for each instance it is resold.

Licensing the output of development tools would be like Microsoft trying to assert
rights in Stephen King’s next novel because he wrote it using Word!

What do I need to worry about in terms of liability with my
software?

Two things mainly.

The software should do what you say it does when used the way it is supposed
to be, and you have be very careful in your End User License Agreement (EULA)
in listing out what uses are legally acceptable and how much liability your
company is willing to accept – i.e. none except the price of the software in the
event of a failure.

Consult your legal advisor in helping craft your EULA.

Page 26 of 26

	The Newbies Guide To Making Software
	You Can Make Money in the Software Business
	Step 1: How to Get Started: The Idea
	An Unlimited Marketplace – It’s Not Just Microsoft
	Filling a Need – Or Defining One
	Major Software Categories
	Software for Individuals
	Software for Businesses
	Before You Start Developing
	Step 2: How to Make Your Program – Or Get It Made For You
	Major Development Languages and Tools
	Java
	C
	C++
	PHP
	Visual Basic
	Perl
	C#
	Python
	JavaScript
	Delphi
	SAS
	PL/SQL
	VB.net
	Lisp
	COBOL
	Ada
	Pascal
	ABAP
	Cold Fusion
	Fortran

	Finding Programming Resources
	Elance
	Guru.com
	Rentacoder
	Scriptlance
	Custom Software Development Companies

	Step 3: Coding and Testing
	Working with Programmers
	The Importance of Testing

	Step 4: Finding Your Target Markets Online
	Upload.com/Download.com
	Selling Your Software

	Supporting Your Software
	Creating Your Software “Brand”
	Software Development FAQ
	In simple English what are the basic steps for developing software?
	Explain what Open Source means?
	Do I need to pay some kind of ongoing license fees for commercial development products I use to make my software?
	What do I need to worry about in terms of liability with my software?

