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Abstract

This thesis presents a quantitative, parametric model for describing musical
tension. While the phenomenon of tension is evident to listeners, it is difficult
to formalize due to its subjective and multi-dimensional nature. The model is
therefore derived from empirical data.

Two experiments with contrasting approaches are described. The first experi-
ment is an online test with short musical excerpts and multiple choice answers.
The format of the test makes it possible to gather large amounts of data. The
second study requires fewer subjects and collects real-time responses to musical
stimuli. Both studies present test subjects with examples that take into account
a number of musical parameters including harmony, pitch height, melodic ex-
pectation, dynamics, onset frequency, tempo, and rhythmic regularity. The
goal of the first experiment is to confirm that the individual musical parame-
ters contribute directly to the listener’s overall perception of tension. The goal
of the second experiment is to explore linear and nonlinear models for predicting
tension given descriptions of the musical parameters for each excerpt.

The resulting model is considered for potential incorporation into computer-
based applications. Specifically, it could be used as part of a computer-assisted
composition environment. One such application, Hyperscore, is described and
presented as a possible platform for integration.
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CHAPTER ONE

Introduction

“Dimidium facti qui coepit habet.”

– Horace

Music is structured sound. Through parsing and interpreting these structures,
listeners arrive at a musical experience that is highly personal. This experience
can range from active interest to stronger emotional responses like happiness
and sadness. How these constituent parts translate into something as high-
level as affect is multilayered and complex. One key to gaining insight into
this process is the concept of musical tension. The perception of tension is an
important intermediate step between the recognition of musical structures and
the subjective, emotional response.1

To a greater or lesser extent, this phenomenon is evident to listeners and is
relatively easy to define in qualitative terms. For example, increasing tension
can be described as a feeling of building excitement or impending climax, or
an increase in uncertainty, while decreasing tension can be described as a feel-
ing of relaxation, resolution, or fulfillment. It can also be defined in terms of
changing expectations, realized or denied. The difficulty lies in formalizing and
quantifying this definition. While tension is a fundamental concept in theories
of Western music, there exists no universal theory that describes how disparate
musical features combine to produce a general feeling of tension.

1This work is concerned with what Meyer calls the “absolutist” as opposed to the “refer-
ential” meaning of music [Meyer, 1956]. It only considers what is within in the context of the
musical work itself, not extramusical concepts.



1.1 Musical parameters

In most types of music throughout the world, sound dimensions such as pitch,
duration, loudness, and timbre are categorized and organized into ordered rela-
tionships. Well studied, particularly in the case of tonal hierarchies in Western
music, is the fact that listeners implicitly recognize these relationships common
to music from their culture, even if they’re incapable of naming these rules
or structures. Trained musicians learn to identify these musical rules through
study, much like a child who understands the rules of grammar in his or her
native tongue but is unable to name the rules explicitly until learning them in
school [Bigand, 1993].

Many of the features of music perception that appear early in development
are also found in the universal features of music across cultures. Dowling and
Harwood (1986) suggest that several features are common to virtually all of
the world’s musical systems. These include (1) the octave as a basic principle
in pitch organization, (2) a logarithmic pitch scale, (3) discrete pitch levels,
(4) five to seven unequally spaced pitches in a scale, (5) hierarchies of stabil-
ity for pitch, and (6) melodic contour as an important organizational device
[Justus and Bharucha, 2002].

Musical structures built from these categories, depending on how they are
arranged, create expectancies. Expectation is a phenomenon “known to be a
basic strategy of the human mind; it underlies the ability to bring past experi-
ence to bear on the future” [Margulis, 2005]. Both the expectancies themselves
and how these they are resolved (or not) influence the way people perceive
tension in music.

Research has shown that musical expectancy is governed by several factors, in-
cluding melodic interval size [Carlsen, 1981] [Unyk and Carlsen, 1987], melodic
contour [Boltz and Jones, 1986], rhythmic features [Boltz, 1993] [Jones, 1987]
[Jones and Boltz, 1982] [Jones et al., 1993] [Schmuckler, 1990], and tonal
and harmonic structures [Abe and Hoshino, 1990] [Bharucha and Stoeckig,
1986] [Bharucha and Stoeckig, 1987] [Schmuckler, 1989] [Schmuckler and Boltz,
1994] [Lerdahl and Krumhansl, 2003] ([Bigand et al., 1996]). In another study
[Krumhansl, 1996], subjects were asked to move a slider in response to the de-
gree of tension they heard in a movement from a Mozart piano sonata. Tension
judgments appeared to be influenced by melodic contour, harmony, tonality,
note density, and segmentation, as well as expressive features such as dynamics
and tempo variation.

1.2 Objective and approach

This thesis presents an approach to modeling musical tension that takes into
account multiple structural and expressive features in music. The objective of
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this work is to define and quantify the effect of these individual parameters on
the overall perception of tension and to describe how these features reinforce
and counteract each other. Previous studies focused on a small subset of fea-
tures (particularly harmony and melodic contour or some combination of both)
without attempting to understand how other parameters or expressive features
such as loudness and tempo directly affected listeners’ sensitivity to them.

The model described here is based on a significant amount of empirical data
gathered in two experimental settings. The first experiment is a web-based
study designed to gather data from thousands of subjects from different musical
and cultural backgrounds. The second experiment is a smaller study designed
to obtain real-time, continuous responses to stimuli. In these experiments,
subjects were asked to listen to musical examples and describe how they felt
the tension was changing. The musical excerpts were composed or selected with
six parameters in mind: harmony, melodic expectation, pitch height, tempo,
onset frequency, and dynamics. By reducing degrees of musical freedom, the
examples isolated or combined these features in order to effectively gauge how
they affected subjects’ overall perception of tension. Some examples consisted of
a single feature changing over time, while others included two or more features
either in concert or opposition to one another.

1.3 Motivation

Aside from the value of having a model that attempts to define musical tension
from a new perspective, this work also provides a foundation for implementation
and incorporation into applications for computer-assisted analysis of music as
well as computer-assisted and purely automated composition. Composers com-
monly manipulate tension and relaxation in their music to influence a listener’s
response to the music. How this is done is often critical to the effectiveness of
a piece. Applications that help both professionals and novices compose music
could be improved with the incorporation of a model that can analyze tension
or generate music given a tension description and some musical material. In the
case of professional composers, having a way of generating exploratory mater-
ial based on tension descriptions could be useful, particularly for sketching out
ideas. For novices looking for help and direction, such a tool could be highly
instructive or even critical to producing original, creative work.

The author’s past research has been in the domain of computer-assisted com-
position systems. Hyperscore, one such example, is discussed as a possible
application for the tension model. Hyperscore is an application that facilitates
composition through the intelligent mapping of musical features to graphical
abstractions, providing a visual analogue for what is happening structurally in
the music. Users without musical training are able to compose with Hyperscore
because it abstracts away complex musical features such as harmony and coun-
terpoint. Hyperscore is a forward (or synthesis) model: people are given the
tools to create music. The musical feature space is reduced by taking away the
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focus from certain aspects (for example, removing the requirement to read staff
notation, a big barrier to entry for many potential composers) and providing
certain knobs that allow for easier use (such as abstraction of harmony).

The original prototype of Hyperscore was based on the idea that a graphical
curve is an intuitive way to represent musical tension. A person using Hyper-
score could draw a “tension” curve to describe the arc of a piece, and would
provide the system with some melodic material which would then be used by
the system to generate music. In subsequent versions of Hyperscore, this idea
eventually evolved into something less encompassing—the general tension curve
became a harmonic tension curve and the compositional process became less
automated.

While the final version of Hyperscore successfully assisted users in composing
original and often highly sophisticated pieces of music, anecdotal observation
made it clear that the ability of the system was limited. In order for it to
evolve into an intelligent tool capable of helping users on multiple musical and
creative levels, it needed to “understand” the concept of musical tension. For
this to be possible, an analytical, first-principles approach to understanding
and quantifying tension was necessary. The result is the work presented in this
thesis.

1.4 Overview of Thesis

Chapter 2 provides an overview of work related to musical tension in the fields of
music theory and music cognition. Lerdahl’s tonal tension model and Margulis’
melodic expectation model are discussed in particular detail because they are
used in the data analysis.

Two experiments designed to collect the data are described in Chapter 3. Exper-
iment 1 was a web-based study that collected data from nearly 3000 subjects.
Most of the musical examples were short and the questions were in multiple
choice format. Experiment 2 was a more traditional music cognition study
that collected real-time responses to more complex musical stimuli including
excerpts from pieces by Beethoven, Brahms, and Schönberg. Subjects were
asked to move a slider up and down to indicate changes in tension.

Chapter 4 describes the analysis of data collected from the two experiments.
For Experiment 1, statistics are presented comparing how subjects responded
to different musical features as well as how responses between musically experi-
enced subjects and musically inexperienced subjects differed. For Experiment
2, descriptive graphs were generated for each excerpt in order to quantify all
relevant musical features. These graphs were then used to perform regression
analysis on the empirical data. The first part of each excerpt was used as train-
ing data in an attempt to come up with either a linear or nonlinear model that
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accurately predicted the remaining data. Correlation between features and the
empirical data is discussed as well as differences between responses of musicians
and non-musicians.

Chapter 5 discusses possible applications of the model. Early versions of Hy-
perscore and how they attempted to address the issue of musical tension are
described. The final version of Hyperscore is discussed in detail with a partic-
ular focus on how the harmonic tension line was implemented. Ideas for how
the general tension model could be incorporated into Hyperscore are outlined.

Chapter 6 summarizes the findings and outlines the next steps for improving
the model.
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CHAPTER TWO

Prior Work

“Et nunc, reges, intelligite; erudimini qui iudicatis terram.”

– Psalm 2:10

The study of tension and resolution is central to Western music theory and
has been a matter of ongoing debate for both music theorists and cognitive
psychologists. Schenkerian analysis, probably the most original and influential
analytical theory of the twentieth century, was developed over a period of 40
years [Schenker, 1906] [Schenker, 1935]. It suggested a new level of logic in tonal
music, arguably becoming the dominating music-theoretical paradigm of the
second half of the 20th century. Schenkerian analysis has influenced the most
recent theoretical developments including Lerdahl and Jackendoff’s Generative
Theory of Tonal Music (1983). Lerdahl and Jackendoff developed an influential
theory that formalized the listener’s understanding (i.e. mental representation)
of tonal music. Much of what they investigate is psychological in nature. The
formulation of their theory coincided with and provided stimulus to the growth
in studies of what has since become an independent, mostly experimentally
based discipline: music cognition. [Palisca and Bent, 2003]

2.1 Schenkerian analysis

Schenkerian analysis is a technique for answering the question, “How are har-
monic progressions directed towards a goal?” Schenker saw music as the tempo-
ral unfolding, or prolongation, of a major triad, and composition as the large-
scale embellishment of a simple underlying harmonic progression—in essence
a massively-expanded cadence. His method is particularly designed to show
the special importance that large-scale linear formations have in the creation of



directed motion toward harmonic goals. Schenker attempted to combine har-
monic analysis with the principles of strict counterpoint in such a way as to
overcome the limitations of each and show that even artistry and taste were
not wholly inaccessible to rational explanation. [Bent, 1987]

There are three levels of analysis: the foreground, consisting of the surface
details, the middleground consisting of mid-level deep structures, and the back-
ground or ursatz, the fundamental structure. Most of the real analysis takes
place in the middleground (Figure 2-1). The ursatz also includes a descending
upper voice called the urlinie.

Figure 2-1: Middleground analysis of Bach Prelude in C Major, Well-Tempered Clavier Bk. I
[Forte and Gilbert, 1982].

This structure fits many tonal pieces although it is an abstraction far removed
from the listener’s experience. The lack of direct correlation between score and
analysis does create certain difficulties in judging or verifying Schenkerian in-
terpretations. If Schenkerian analysis explains how people normally hear music,
why would it be necessary to learn a new way of hearing music in order to carry
out the analysis? Schenker believed that the most fundamental part of musical
experience is directed motion towards an endpoint, and that almost all music
exhibits more or less the same structure at this background level. However, it
may be argued that listeners do not work backwards—it seems unlikely that
any such unconscious understanding exists. Nevertheless, Schenker’s ideas have
been fertile ground for both music theorists and composers of computer-based
music.

2.2 Generative theory of tonal music

Fred Lerdahl and Ray Jackendoff’s generative theory of tonal music (GTTM)
[Lerdahl and Jackendoff, 1983] attempts to characterize the way listeners per-
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ceive hierarchical structures in tonal music by developing a grammar based in
part on the goals, though not the content, of generative linguistics. This gram-
mar is intended to model musical intuition and takes the form of explicit rules
that assign or “generate” structures that listeners unconsciously infer from the
physical signal (or “musical surface”) of a piece. These principles define com-
ponents of musical intuition that are hierarchical in nature:

• grouping structure - segmentation of music into motives, phrases, and
sections.

• metrical structure - hierarchy of alternating strong and weak beats.

• time-span reduction - hierarchy of structural importance of pitches
with respect to their position in the grouping and metrical structures.

• prolongational reduction - hierarchy that expresses harmonic and melodic
tension and relaxation (this component is the closest to Schenkerian re-
duction).

Each of these structures is described formally by a separate component of the
musical grammar and within each component there are three rule types. Well-
formedness rules specify the possible structural descriptions. Transformational
rules apply certain distortions to the otherwise strictly hierarchical structures
provided by the well-formedness rules. Preference rules1 do the major work of
analysis within the theory by picking structural descriptions that correspond
more closely to experienced listeners’ hearing of any particular piece.

2.3 Lerdahl’s tonal tension model

Lerdahl has significantly extended GTTM by developing a precise model of
how a piece is heard as it unfolds in terms of paths in pitch space at multiple
hierarchical levels. His theories stem from empirical evidence that listeners of
varying musical backgrounds and different cultures hear pitches, chords, and
regions as relatively close or distant from a given tonic in an orderly way. He
has developed a quantitative model of these intuitions.

2.3.1 Perception of tonal hierarchies

Cognitive approaches like Lerdahl and Jackendoff’s theory emphasize the
importance of tonal function (see also [Bharucha, 1984], [Krumhansl, 1990],
[Bigand, 1993], and [Lerdahl, 2001]), while more perceptual theories un-
derline the psychoacoustic features of chords ([von Helmholtz, 1877],
[Mathews et al., 1987], [Parncutt, 1989], [Roberts and Shaw, 1984]).

1More recently David Temperley has extended and elaborated the concept of preference
rules [Temperley, 2001].
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Figure 2-2: GTTM analysis of a Bach chorale showing the prolongational tree, metrical grid,
and grouping analysis [Lerdahl, 2001].

It has been established that Western listeners have an implicit knowl-
edge of tonal hierarchies [Krumhansl and Shepard, 1979] [Krumhansl and
Kessler, 1982]. Experiments have shown that even inexperienced listeners
have internalized within-key hierarchies and between–key distances ([Dowl-
ing and Harwood, 1986], [Francès, 1958], [Krumhansl, 1990]). In one study
[Krumhansl and Shepard, 1979], all seven notes of the C major scale were
played followed by one of the twelve notes of the chromatic scale. Subjects
had to rate how well the last note completed the previous notes. The results in-
dicted that the notes judged to provide the least adequate completion were the
ones outside the key of C major, confirming the implicit knowledge of various
keys. Among the pitches within the key of C there was also a clear hierarchy;
all listeners felt the tonic pitch C provided the best completion followed by G
and E. Other studies have explored the implicit learning of tonality and have
obtained similar results [Bharucha, 1987].

On the psychological level, differences in the hierarchical level of pitches gener-
ate patterns of musical tension and relaxation. Notes low on the tonal hierarchy
produce strong tensions that then can be resolved by the arrival of more stable
notes [Bigand, 1993]. Likewise chords in a tonal context convey tension and
relaxation through resolution (or lack of resolution). For example, a dominant
seventh chord generates the expectancy that it will resolve to the tonic. A chord
that realizes or confirms this expectation creates a feeling of relaxation. Musical
tension and musical expectancy may be viewed as two co-occurring phenomena.

32 CHAPTER 2. PRIOR WORK



Therefore, we may assume that studying either should provide a complimentary
insight about similar or related aspects of music cognition [Bigand et al., 1996].

2.3.2 Lerdahl’s criteria for tonal tension

Lerdahl approaches tonal tension in a systematic way by defining a formula for
computing quantitative predictions of tension and attraction for events in any
passage of tonal music. In order to calculate these values, the following four
components are required [Lerdahl, 2001] [Lerdahl and Krumhansl, 2003]:

• A representation of hierarchical event structure

• A model of tonal pitch space and all distances within it

• A treatment of surface dissonance

• A model of voice-leading attractions

The first component is equivalent to GTTM’s prolongational reduction and can
be represented in tree notation (see Chapter 4 and Appendix B for examples of
analyses).

The second component describes the internalized knowledge of listeners con-
cerning distances of pitches, chords, and tonal regions from one another, beyond
the pattern of any particular piece. It is represented by three embedded spaces,
the first two representing within-key hierarchies, and the third one between-key
distances. The first space is pitch-class proximity. It consists of five levels:
chromatic, diatonic, triadic, fifth, and root. The second space is chord prox-
imity within a key (or region), and the third space distances between keys or
regions. The diatonic chord distance rule is thus defined as follows:

δ(x, y) = i + j + k (2.1)

where δ(x, y) = the distance between chord x and chord y, i = the number of
steps between two regions on the chromatic fifths circle (i.e. distance between
two chords with regard to key), j = the number of steps between two chords on
the diatonic fifths circle (distance with regard to chord function), and k = the
number of distinctive pitch classes in the basic space of y compared to those in
the basic space of x.

The third component, treatment of surface dissonance, is largely psychoa-
coustic. For example, nonharmonic tones are less stable, therefore more tense.
A chord is more stable in root position than in inversion, and more stable with
the root note in the melody. The surface tension rule is defined as follows:
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Tdiss = f + g + h (2.2)

where Tdiss = the surface tension associated with chord y, f = chord voicing (1
if the melody is not the chord root, 0 otherwise), g = inversion (2 if the chord is
not in root position, 0 if it is), and h = sum of all nonharmonic tones (sevenths
= 1, diatonic nonharmonic tones = 3, and chromatic nonharmonic tones = 4).

The fourth component describes how listeners experience the relative pull of
pitches toward other pitches in a tonal context; for example, a leading tone
has a strong attraction to the tonic. Bharucha’s notion of anchoring provides
a psychological account of this phenomenon of less stable pitches tending to
resolve on subsequent, proximate, and more stable pitches [Bharucha, 1984].
The melodic attraction is defined as follows:

α(p1, p2) =
(

s2

s1

)(
1
n2

)
(2.3)

where α(p1, p2) = the melodic attraction of pitch p1 to p2, s1 = the anchoring
strength of p1, s2 = anchoring strength of p2 in the current configuration of the
basic space, and n = the number of semitone intervals between p1 and p2.

The final tonal tension equation is defined as the sum of all four components:

Tglobal = δ(x, y) + Tdiss + α(p1, p2) + t (2.4)

where t is the inherited tension value derived from a GTTM prolongational
analysis.

An ongoing, large-scale study has already resulted in empirical support for
Lerdahl’s tonal tension model. See [Lerdahl and Krumhansl, 2003] for more
details.

2.4 Melodic structures

Veridical expectations represent specific knowledge about the way a particular
piece progresses, for example, a listener’s knowledge of Beethoven’s Seventh
Symphony after listening to it 100 times. On the other end of the spectrum are
expectations automatically predicted from patterns that can be implicitly ex-
trapolated from an extensive corpus of music, as in the case of tonal hierarchies;
these are classified as schematic expectations.
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Within this category, expectations can range from “shallow” to “deep.” For ex-
ample, the ability to identify cadences in the style of Mozart is learned through
listening to various examples of Mozart’s music. After hearing enough examples,
certain harmonic and melodic patterns become expected when these cadences
occur. These expectations can be violated and give rise to a feeling of tension.
Unlike the implicit understanding of tonal hierarchies, however, these expectan-
cies are considerably more shallow because new examples of such cadences can
more easily modify previous expectations and the corpus from which the pat-
terns are learned is far smaller (e.g. works only by Mozart versus all Western
music). [Margulis, 2005]

At the very lowest level are “deeply schematic” structures. These structures
are universals that not only apply to Western music but all types of mu-
sic. Expectations arising from these structures still exert an influence on lis-
teners’ expectations, even if they go against veridical knowledge of a piece
[Tillmann and Bigand, 2004a] [Justus and Bharucha, 2001].

2.4.1 Implication-Realization theory

Narmour’s implication-realization (I-R) theory [Narmour, 1977] [Narmour,
1992] concentrates almost exclusively on deeply schematic, note-to-note melodic
relations. In effect, the analytic method he purposes is intended to track and
reflect fluctuations in affect that arise from the validation or invalidation of the
moment-to-moment subconscious inferences made by a listener concerning the
way a piece of music unfolds [Cross, 1995]. The Implication-Realization theory
was conceived as an alternative to Schenker’s idea of prolongation. It is an
extension of the work of Leonard Meyer, who used Gestalt principles of percep-
tual organization to account for the way listeners’ expectations are generated
and manipulated [Meyer, 1956].

Narmour’s main hypothesis is that any two successive pitches imply a third
pitch. Any pair of melodic pitches transmits separate intervallic and registral
messages to the listener that imply continuation when the interval is small (e.g.
a major second going up followed by another major second going up) or reversal
of direction and differentiation of interval size when it’s large (e.g. a major sixth
going up followed by a minor second going down). These universal bottom-up
principles are also combined with a top-down approach regarding learned or
style-specific principles. These concepts are particularly useful in codifying
the analysis of melodic contour and how it affects the listener’s perception of
tension.

While Narmour’s I-R model clearly categories melodic segments, it only sec-
ondarily denotes the theorized expectedness of each segment—expectations are
given only every third note sometimes. The Implication-Realization theory’s
foundational reliance on Gestalt principles using notions of “good” and “best”
to describe groupings is also vague. Furthermore, the definition of similarity
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implying another similarity versus differentiation implying differentiation seems
inconsistent; e.g. although pitches nearer to one another are closer in frequency,
that doesn’t necessarily imply that they sound more “similar.” The notational
system in I-R is also opaque—it shows structures but does not categorize them
according to their degree of realization or denial. As a result, raw taxonomy
obscures the main intent. [Margulis, 2005]

2.4.2 Margulis’ model of melodic expectation

Margulis’ model of melodic expectation [Margulis, 2005] extends the I-R model
while addressing some of its problems. The key connections between the I-R
model and Margulis’ model are a commitment to an account of purely schematic
expectations and the centrality of proximity and distance. An additional fac-
tor, stability, is derived from Lerdahl’s tonal pitch space and melodic attraction
models, thus addressing tonal relationships as well as melodic interval relation-
ships. Aside from incorporation of tonal relatedness (stability) and treatment
of hierarchy and factors such as meter and harmony, Margulis’ model provides
quantitative predictions of expectedness.

The core formula defining the expectancy of a pitch is defined as follows:

z = (smp) + d (2.5)

where z is the amount by which pitch x is expected to follow pitch y, s = the
stability rating of x (see Table 2.1), m = the mobility rating of x (2/3 if x
repeats y and 1 in all other cases), p = the proximity rating of x (see Table 2.2,
and d = the direction rating of x (see Table 2.3).

Stability rating Key and chord context

6 Chord root (and, after a seventh in the melody, the pitch one
diatonic step down from it

5 Chord third and fifth
4 Other diatonic pitches
2 Chord root (Chromatic pitches

Table 2.1: Table showing stability ratings and the requirements which govern them.

When calculating stability ratings, the context is I in the current key unless the
following apply:

• A secondary chord has occurred, in which case the context shifts to I in
the tonicized key.
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• The melody note constitutes a nonchord tone with respect to the current
harmony, in which case the context shifts to the current chord in the
current key.

• The previous melody note was the seventh of the chord, in which case its
lower diatonic neighbor is promoted to the highest stability rating.

• A strong predominant chord such as an augmented sixth or Neapolitan
has occurred, in which case the context shifts to V in the current key.

Pitch Distance in Semitones Proximity Rating

1 (m2) 36
2 (M2) 32
3 (m3) 25
4 (M3) 20
5 (P4) 16
6 (d5) 12
7 (P5) 9
8 (m6) 6
9 (M6) 4
10 (m7) 2
11 (M7) 1
12 (P8) 0.25
13 (m9) 0.02
≥14 (M9) 0.01

Table 2.2: Table showing proximity ratings. Proximity ratings increase as semitone distance
increases, reflecting the expectation that pitches will proceed to relatively nearby continuations.

Interval size in semitones Direction Rating

0 (P1) 6 for continuation
1 (m2) 20 for continuation
2 (M2) 12 for continuation
3 (m3) 6 for continuation
4 (M3) 0
5 (P4) 6 for reversal
6 (d5) 12 for reversal
7 (P5) 25 for reversal
8 (m6) 36 for reversal
9 (M6) 52 for reversal

≥10 (m7) 75 for reversal

Table 2.3: Ratings given to events that lie in the direction implied by the interval between the
preceding two notes.

Deeply schematic structures are not just dependent on the progression of a few
notes, but a larger context as well. Thus the final values are calculated by
averaging the weighted values of expectations at each hierarchical level defined
by a GTTM time-span reduction. The weight given to each level depends on
the length of time between the notes. At the note-to-note level (lowest level) the
expectation ratings receive a weight of 15. Ratings at levels beyond the note-to-
note level, up to and including levels with spans of two-second duration, receive
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a weight of 5. Ratings at levels with time-span durations from two up to six
seconds receive a weight of 2. No levels with durations longer than six seconds
are considered. Thus the formula for overall expectedness of a note is as follows:

∑n
i=1 wizi∑

wi
(2.6)

where i = the level under consideration, n is the highest level, wi = the weight
of the level under consideration, and zi is the expectancy rating for the pitch
at that level.

Margulis’ model also addresses issues concerning affect by describing three kinds
of responses to changes in tension:

• surprise-tension correlates inversely with expectancy ratings, e.g.
highly predictable events generate little surprise-tension. Listener’s as-
sociated experience is a subtle feeling of intensity or dynamism.

• denial-tension correlates directly with implicative denial—it’s the dif-
ference between the maximally expected pitch and the expectancy rating
of the pitch that actually occurred. Listener’s associated experience is a
sense of will, intention, or determinedness.

• expectancy-tension pertains to the strength of expectation generated
by an event about future events. It is directly proportional to expectancy
rating of the most-expected possible continuation. Listener’s associated
experience is an impression of strain or yearning.

A slightly modified version of Margulis’ model is utilized in the analysis of
empirical data from Experiment 2. See Chapter 4 for examples of the analysis
process and how the model is used.

2.4.3 Melodic contour and tension

Melodic expectancy is one important factor that contributes to the experi-
ence of musical tension. The results of the comparison between Margulis’
tension predictions and Krumhansl’s tension data [Krumhansl, 1996] suggest
that expectancy-based tension forms an important part of the generation
of overall experiences of tension. In other studies, the responses of listen-
ers in continuity-rating and melody-completion tasks have provided empiri-
cal support for some of the principles described in Namour’s and Margulis’
models [Krumhansl, 1995] [Cuddy and Lunney, 1995] [Thompson et al., 1997]
[Schellenberg, 1996], [Schellenberg, 1997].
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There also exists a body of research that has examined the memory
and mental representation of specific melodies. These include studies
of melody recognition when transposed to a new key, suggesting that
melodic fragments are encoded with respect to scales, tonal hierarchies,
and keys ([Cuddy and Cohen, 1976] [Dewar et al., 1977] [Cuddy et al., 1979]
[Cuddy et al., 1981] [Cuddy and Lyons, 1981]. Melodies are processed and en-
coded not only in terms of the musical scale in which they are written, but also in
terms of their melodic contour. When discriminating between atonal melodies,
where there is no tonal hierarchy, listeners rely mainly on the melodic contour
[Dowling and Fujitani, 1971]. Furthermore, within tonal contexts, melodies
and their transpositions that alter particular intervals by semitones to pre-
serve the key are just as easily confused as exact transpositions to new keys
[Dowling, 1978]. One explanation of this result is that the contour, which is
represented separately from the specific interval information, is processed rela-
tive to the framework provided by the scale [Justus and Bharucha, 2002].

Due to these factors, the analysis of musical excerpts used in Experiment 2, de-
scribed later in Chapter 4, employs separate descriptions of melodic expectan-
cies and pitch height.

2.5 Some comments on tension outside the tonal
context

Tension in atonal music—by its very definition—cannot be measured with re-
gard to tonal structures. While deeply schematic melodic rules described by
Narmour are still applicable, melodic attraction rules dependent on harmonic
functions are not.

Lerdahl proposes a flat pitch-space distance rule which measures distance be-
tween two chords by comparing the number of interval classes and pitch classes
in each chord [Lerdahl, 2001]. He also suggests that listeners infer an event
hierarchy based on the relative salience of events. An event is deemed to have
greater structural importance ([Lerdahl, 1989] if it meets the following criteria:

• attacked within the region (i.e., within the time span) [3]

• in a relatively strong metrical position [1]

• relatively loud [2]

• relatively prominent timbrally [2]

• in an extreme registral position [3]

• relatively dense [2]

• relatively long in duration [2]
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• relatively important motivically [2]

• next to a relatively large grouping boundary [2]

• parallel to a choice made elsewhere in the analysis [3]

(The numbers in brackets indicate the relative strength of the condition.)

The findings of Dibben (1999) indicate that there is empirical support for the-
ories of atonal prolongational structure. She investigates the perception of
structural stability in atonal music through two experiments. The first exper-
iment suggests that listeners are greatly influenced by metrical and durational
structures and hear atonal music in terms of the relative structural importance
of events. The second experiment suggests that listeners infer relationships
of relative structural stability even in the absence of clear rhythmic, timbral,
dynamic, and motivic information. They are influenced by a number of other
factors including horizontal motion and dissonance in particular.

Beyond discrete-pitch-based analyses, the feature of timbre is of particular im-
portance. In contrast to cognitive approaches to tension, psychoacoustical mod-
els predict the strength of pitch relationships between successive chords without
considering the listener’s implicit knowledge of tonality [Bigand et al., 1996].
Pressnitzer et al. (2000) suggest that psychoacoustic roughness plays an im-
portant role in the perception of musical tension in the absence of tonality,
dynamics, or rhythmic cues. Roughness is an auditory attribute that has been
proposed as a sensory basis for musical consonance within the tonal system
[von Helmholtz, 1877].

2.6 Modeling expressive characteristics of music

The model described in this thesis takes into account the expressive features of
dynamics and tempo variation as well as inherently musical, higher-level fea-
tures such as harmony and melody. While empirical studies [Krumhansl, 1996]
suggest that performed tempo and dynamics have remarkably little effect on
tension judgments, perhaps more extensive and less subtle variations in loud-
ness and tempo would produce a different result (see Chapter 4). In any case,
the reverse doesn’t seem to apply: it appears that tension judgments stemming
from musical features such as melodic and harmonic structures influence the
way people expressively interpret music.

This relationship between dynamics and tempo and other musical features is
particularly well presented in the work of Widmer, who combines machine learn-
ing with music theory to model musical expression. From a machine-learning
perspective, his objective is to study various types of imprecise and incomplete
domain knowledge and ways of using them to form better hypotheses. From
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a musical perspective, he tries to answer the following questions: What kind
of general musical knowledge do listeners possess? How can it be formalized?
What is the relationship between this knowledge and expressive performance?
What structural aspects of music determine or influence the acceptability of
performances? [Widmer, 1998]

The parameters used by Widmer to analyze expressive musical performances
were dynamics (crescendo vs. diminuendo) and timing (accelerando vs. ritar-
dando). Training data for the learning system were melodies (i.e. sequences of
notes), along with actual (human) performances of them. The system’s task
was to learn when and how to apply dynamics and tempo variations to given
melodies. The learned rules then allowed the system to play new pieces expres-
sively. The approach was guided by three important assumptions:

• Expressive interpretation is in part the communication of the understand-
ing of musical structures.

• Some knowledge of musical structures can be described explicitly. This
background knowledge is based on Lerdahl and Jackendoff’s generative
theory of tonal music and (more loosely) on Narmour’s implication-
realization theory.

• The level of symbolic notes (as opposed to sound spectra) is a reasonable
abstraction level.

Widmer’s approach tested whether expressive principles could be learned at all
by a machine and whether the addition of explicit musical knowledge could help
the learning process. There were three approaches taken: the first was note-
based and didn’t use the background knowledge (for comparison purposes); the
second approach was also note-based but did use the background knowledge;
the third approach abandoned the note level and tried to learn expression rules
directly at the level of the musical structures expressed by the knowledge base.
The use of a knowledge base in the latter two cases led to a clear improve-
ment of learning results. The third approach worked the best, suggesting that
learning at the abstraction level of musical structures produces performances
of much higher quality than rules learned and formulated at the note level
[Widmer, 2000].

One caveat Widmer mentions is the problem that “correct” musical interpre-
tation is not definable, since it’s an aesthetic judgment. However, both the
qualitative and quantitative results of his experiments indicate how higher level
musical structures are essential in understanding how humans perceive music
and provide yet more evidence in support of theories such as GTTM.
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2.7 The role of prior work in defining a new model

Since the model described in this thesis is defined in terms of multiple musical
parameters, all of these parameters must be adequately described before their
contribution to the whole can be analyzed. In other words, if features such as
harmony and melodic expectation contribute in some way to the overall feeling
of tension, their contributions in isolation of other features must be quantified
first before they can be combined and compared with other parameters that
might strengthen or weaken their contribution.

Some of these features are easy to quantify—for example, tempo is a one-
dimensional feature that can be described in terms of beats per minute with
respect to time. Harmony and melodic expectation, on the other hand, are
complex multidimensional features. The prior work presented here, in particu-
lar, Lerdahl’s and Margulis’ models, are utilized to quantitatively describe the
individual contributions of harmony and melodic expectation to tension; given
that these two models are already quantitative, they are ideal for this pur-
pose. The resulting descriptions produced by them are then used to inform the
analysis required to define a new global tension model. The goal of this thesis
is not to find new models for describing harmonic tension, melodic tension, or
any other individual parameter, but to apply available theoretical descriptions
of them (assumed to be reasonable approximations of listeners’ perceptions)
when necessary, and then determine how they combine and interact with other
parameters like tempo and dynamics to produce a global feeling of tension.
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CHAPTER THREE

Method and Experimentation

“Quot homines, tot sententiae.”

– Terence

Two studies were conducted in order to collect empirical data required to in-
form the tension model. Experiment 1 was a web-based study designed to
attract as many subjects as possible (as of December 2005, it had collected
data from nearly 3000 subjects). The musical examples and corresponding re-
sponse choices for Experiment 1 were mostly short and simple. Experiment 2,
in contrast, had far fewer subjects but more varied, complex examples. Unlike
the first experiment, real-time responses to stimuli were recorded.

3.1 Experiment 1: Web-based study

3.1.1 Procedure

The format for this experiment was modeled after the Moral Sense Test, a
web-based study designed by Marc Hauser and his research group at Harvard
[Hauser et al., 2005]. Over 40,000 people have taken this test due to its promi-
nence online and its welcoming format. Because so many subjects have taken
part in the study, the investigators can give a small subset of all the possible
questions to each participant.



The web-based interface1 for Experiment 1 was implemented in collaboration
with Josh McDermott, a researcher in the Brain and Cognitive Sciences depart-
ment at MIT. The collaborative test was officially entitled, “Music Universals
Study.” The first two parts of the exam were designed by McDermott and are
not related to the research described here. The third and final part was the
tension experiment. This part consisted of 11 questions selected from a set of
207 musical examples.

The test as a whole contained two surveys, one taken before the test and one
taken afterwards. The first survey asked some technical questions (type of com-
puter, operating system, and speakers used by the subject), and some questions
about cultural background (country of origin, country where participant grew
up, educational level). The survey at the end asked questions pertaining to prior
musical experience (formal training in instrumental and/or vocal performance,
composition, music theory). Following the initial survey, a series of tones rang-
ing from very low to very high frequencies were played to help subjects calibrate
their speakers properly. This was necessary since observers were not there in
person to make sure subjects heard the stimuli with minimal distortion.

The tension section was introduced by the following text: Many different aspects
of music can contribute to the feeling that a piece of music is “going somewhere.”
This last experiment explores how these aspects combine to create feelings of
tension and resolution. You will be played short a series of sound files and
asked to choose a graphical representation that best fits how you feel the tension
is changing in the music.

Each musical example in the test was played twice. Subjects chose from a
selection of curves graphically depicting changes in tension (Figure 3-1). The
graphics were partially designed with Hyperscore in mind as a future application
of the model (see Chapter 5 for details).

After test takers selected an answer that best fit how they perceived the tension
in a musical example, they rated the confidence of their response on a scale of 1
to 5. This confidence value provided additional information on how the listener
judged an example and how clear or unclear the change in tension was.

3.1.2 Selection of musical examples

At the beginning of the test, subjects were presented with a sample question
that was answered for them (Figure 3-2). This question was assumed to have an
obvious answer (or at least as obvious an answer as possible given the subjective
nature of the topic). Certainly not all of the questions had a clear answer; the
sample question was meant as a guide to show the subject what a feasible
response might be.

1Implemented by Joe Presbrey with additional scripts by Rich Chan.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 3-1: Response choices for Experiment 1.

(a)

(b)

Figure 3-2: (a) Initial sample question in Experiment 1. All parameters are clearly increasing in
tension. (b) Assumed “correct” answer: the graphical response indicating tension is increasing.

The examples were 2 to 60 seconds long and recorded using piano, strings
or unpitched percussion sounds. Each example was entered in Finale (a no-
tation editor) and played back and recorded with two MIDI synthesizers (a
Kurzweil K2500 and Roland 5080). The volume scaling for examples with
loudness changes was done in an audio editing program. Due to perceptual
differences in loudness sensitivity depending on the frequency range (see Sec-
tion 4.2.1 for further discussion on loudness perception) some examples were
adjusted by hand to sound more consistent.

Most examples were recorded with both piano and string sounds, while only a
small subset were recorded with unpitched percussion. This is due to the fact
that most excerpts required pitched sounds (e.g. those with harmony or pitch
height changes). Out of the 207 audio files that were used in the experiment,
102 were musically unique excerpts. All were recorded with piano, 85 with

3.1. EXPERIMENT 1: WEB-BASED STUDY 45



strings, and 20 with percussion. Some of the harmony examples only varied
with regard to major or minor mode. If those pairs are counted once, the total
number of unique examples is 85.

Each example file was designated by a group number (Table 3.1). Examples
within the same group were very similar and highlighted the same features in
slightly different ways. Figure 3-3 shows several examples from group 001.

034000a_s_maj001 031000_s_maj001 012000_s_min001

Figure 3-3: Three musical examples from group 001.

The sample question (Figure 3-2) was taken from group 011. Out of the 11 fol-
lowing questions, only the first (taken from group 013) was not chosen randomly.
This question was used as a control (Figure 3-5); like the sample question, it
was considered as close to an “easy” question as possible (the presumed answer
was that tension decreased). It could also be used as a measure for whether or
not the subject understood what was being asked. A response specifying the
opposite of what was expected might indicate that the subject’s other responses
were unreliable.

Questions 2 through 9 were selected by randomly choosing a group less than
111 and then randomly selecting an example in that group. If the example
chosen had been recorded with different instrumental sounds, the timbre was
selected randomly as well. Only one example per group could be chosen. As a
result, previously selected group numbers could not be considered in subsequent
questions. An example from group 111 was always chosen for question 10 and
an example from group 112 was always chosen for question 11. These last two
questions were different from the others. Instead of being composed specifically
for the test, they consisted of all or part of an excerpt from Bach’s organ
transcription of Vivaldi’s C Major concerto (see Figure A-5 in Appendix A for
score). Excerpts selected included a large one-minute long section of the piece
as well as various smaller sections that encompassed whole and partial phrases,
transitions, and portions with altered tempo and dynamics.

One result of the unequal distribution of examples among groups as well as
the method of selecting the group themselves, was an uneven distribution of
responses per question. With so many subjects, however, this was not significant
problem. Another reason for the unbalanced response distribution was due to
some examples being added midway through the data collection process. These
included examples in groups 020 and higher and mostly covered examples that
featured rhythmic irregularity and parts of the Bach-Vivaldi excerpt.
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Group Num. examples Description

001 7 Simple harmonic progressions with subtle changes in
voicing

002 1 Changes in onset frequency
003 1 Changes in pitch height
004 1 Changes in harmony and pitch height corresponding
005 4 Changes in harmony against changes in onset frequency
006 1 Changes in harmony and onset frequency against loud-

ness
007 4 Changes in harmony with differing degrees of changes

pitch height
008 4 Different combination of changes in onset frequency, har-

mony, and pitch height
009 1 Changes in onset frequency, harmony, and pitch height

against loudness
010 1 Changes in onset frequency, pitch height, and loudness

against harmony
011 2 Changes in onset frequency, harmony, pitch height, and

loudness all increasing in intensity
012 1 Changes in harmony, pitch height, and loudness against

onset frequency
013 1 Onset frequency, harmonic tension, pitch height, and

loudness all decreasing in intensity
014 1 Changes in onset frequency, harmony, and loudness

against pitch height
015 1 Increasing dissonance
016 2 Changes in rhythmic regularity
017 1 Changes in loudness
020 2 Changes in tempo
021 2 Changes in tempo, some examples having notes with

shorter articulation
022 9 Changes in rhythmic patterns (or rhythmic regularity)

coupled with slight changes in onset frequency
023 4 Simpler changes in rhythm (than in group 022) coupled

with slight changes in onset frequency
024 4 Changes in accent placement or meter (related to onset

frequency)
111 26 Excerpts from Bach-Vivaldi concerto
112 5 Excerpts from Bach-Vivaldi concerto with tempo and

dynamics changes

Table 3.1: Different groups of musical examples in Experiment 1.

3.1.3 Design of musical examples

The examples composed for Experiment 1 attempted to systematically isolate
and combine the following parameters:

• onset frequency and tempo

• dynamics (loudness)

• pitch height

• harmony

• rhythmic irregularity
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While these are not the only possible features that could be used to evaluate
musical tension, they form an adequate foundation for analyzing score-based
music.

For this experiment, onset frequency and tempo were placed in a single category.
Tempo change was classified as a type of onset frequency change, though one
that might be difficult to notate precisely. In Experiment 2, however, they were
analyzed separately (see Section 4.2.1).

The main hypothesis being tested was that changes in each parameter would
contribute to changes in tension. For the case of loudness and tempo/onset
frequency, common sense dictated that an increase in those features would
result in an increase in tension. Likewise, increase in pitch height was assumed
to correspond to an increase in tension. Defining harmonic tension was more
complex—Lerdahl’s tonal tension model was used to provide a quantitative
assessment of tension for each chord (for more details on how this was done,
see Chapter 4). Rhythmic irregularity, unlike the other features, was not a
parameter that would obviously affect tension. The hypothesis was that an
increase in rhythmic irregularity (i.e. lack of consistency in onset frequency)
would result in an increase in tension.

The approach used in composing the examples was simple: each feature was
isolated in at least one example and combined with other parameters moving in
the same or opposite direction. Direction refers to the increase or decrease in
tension caused by changes in the feature. For example, if something is speeding
up, the general feeling will most likely be that the tension is increasing. Thus a
single note repeating without any change except for tempo would be an example
of that parameter being featured in isolation. Figure 3-4 shows an example
where the tempo is slowing down yet the harmony is intensifying. This is
naturally confusing to the listener. If the listener hears that the net effect is
an increase in tension, it indicates that the changes in harmony are having a
stronger overall effect on the perception of tension than the decrease in tempo.
If the listener feels that the overall the tension is decreasing, it indicates that
the changes in tempo are having a stronger effect than the harmonic movement.

Clearly, there is no correct response for any of these questions. The interest lies
in what percentage of the participants are uncertain and to what degree they
are uncertain, not necessarily in finding the one right answer.

3.1.4 Demographics

People from 108 different countries took part in the study. Figure 3-6 shows
the percentage of subjects from the top 12 countries and Figure 3-7 presents a
graphical view of subjects’ countries of origin.
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Figure 3-4: Example where two parameters, harmony and tempo, appear to be conflicting in
their contribution to tension.

Figure 3-5: The first question in Experiment 1. All parameters are moving in the same direction:
the harmony is relaxing, the tempo is slowing down, the volume is decreasing, and the pitch contour
is falling consistently.

Figure 3-6: Map showing the origin of subjects in Experiment 1. Numbers shown include only
the people who completed both the first and final surveys (image courtesy of Rich Chan and
Google).
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Figure 3-7: Top twelve countries of origin for subjects in Experiment 1.

3.2 Experiment 2

Collecting data with retrospective judgments has the advantage that it allows a
relatively simple experimental setting (useful in the case of a web-based exper-
iment). However, it does have some limitations. Judgments made by listeners
after an excerpt has ended may not reflect the experience while the music is
playing. Also, it is difficult to use long examples that change over time since
it would require that the responses change over time; these dynamic qualities
are not well represented by a single retrospective judgment. While it might
be possible to overcome the latter limitation by presenting excerpts of varying
length, taken from one long example—as in the case of the Bach-Vivaldi exam-
ples from Experiment 1—they still may not adequately convey the overall flow
of a larger excerpt. Furthermore, the collection of data may be time-consuming,
especially if long musical excerpts are used. It is because of these limitations
that Experiment 2 was designed to measure responses to music in real time.
This method provides a relatively efficient way of capturing a richer response
to the data. [Toiviainen and Krumhansl, 2003]

3.2.1 Test format

Ten musical examples were used as stimuli in Experiment 2. Six of these ex-
amples were short (10 seconds or less) and were composed specifically for the
study. They were similar to the questions found in Experiment 1 and were com-
posed to clarify some points that were not entirely clear from the results of the
previous study. In addition to these shorter questions, there were four excerpts
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taken from the classical repertoire: Schönberg Klavierstück, Op. 11 No. 12, the
Bach-Vivaldi concerto from Experiment 1, Beethoven Symphony No. 1, and
Brahms Piano Concerto No. 2. The longer examples were 20 seconds to one
minute in length. They were also considerably more complex than any of the
examples composed for the study.

Thirty-five subjects, drawn from the faculty and student bodies at MIT, par-
ticipated in the experiment. Their ages ranged from 19 to 59, with a mean age
of 30. Approximately half of the participants were experienced musicians; the
median and mean number of years of combined musical training and active per-
formance for all subjects were 10 and 12 respectively. Seven participants had no
more than five years of instrumental lessons or any other type of musical train-
ing. Three subjects recognized the Brahms example, one subject recognized the
Bach-Vivaldi example, three subjects recognized the Beethoven example, and
two subjects recognized the Schönberg.

Test subjects were presented with a computer interface written in C++ for
Windows (Figures 3-8 and 3-9). Moving the mouse up and down caused a large
vertical slider bar to move up and down without the subject having to press
the mouse button. This was done so that subjects would not tire of holding the
mouse button down or worry about an extra action that might distract from
the listening experience. Subjects were instructed to raise the slider if they
felt a general feeling of musical tension increasing, and to lower it when they
felt it lessening. An increase in tension was defined as the feeling of building
excitement, perhaps moving toward a climactic moment, or the heightening of
feeling that something was unresolved. A decrease in tension was defined as a
feeling of relaxation, rest, or resolution.

Figure 3-8: Experiment 2: countdown to prepare subjects for excerpt playback.

2This excerpt was slightly modified. The most significant change was the simplification of
the dynamics.
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Figure 3-9: Screen shot of Experiment 2 interface in data recording/subject listening mode.

Two pairs of arrows marked the baseline on the slider. It was designated as
the point of the most relaxation, and subjects were encouraged to use it as a
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starting point.3 There was some space below it in case the subject felt that the
lowest point of relaxation had been reached but then afterwards exceeded. The
position of the baseline was decided after observing subjects participate in a
pilot study that experimented with different interface configurations. It became
clear that subjects starting in the middle tended to use only the top half of the
slider, and subjects starting at the very bottom often felt they needed more
space below the starting point.

Each musical excerpt was played four times. After listening and responding to
an excerpt, subjects were asked to select a confidence value. The playback of
each iteration was preceded by visual cues that would appear on the interface to
prepare the subject. The numbers, “3 2 1” would flash on the screen and then
a white square on the interface would turn blue as the music started playing
(Figures 3-8 and 3-9). During playback, as slider motions were being recorded,
the square would remain blue. When the music stopped, the square would turn
white again. The position of the slider was recorded at a sampling rate of 64Hz;
this was the maximum rate possible on the computer used for the experiment.
Slider values ranged from 0 to 100, the baseline being at 20.

Most of the subjects understood the instructions clearly and were able to re-
spond as instructed. Two of the 35 data sets were thrown out due to confusion
or admitted error on the part of the subject. In one case, a test subject felt
the slider should have been horizontal instead of vertical and remarked that he
found himself responding by moving the mouse left to right (which did noth-
ing) instead of up and down. After careful observation of all 35 test subjects,
it appears that the best sort of interface for this kind of data collection might
be a device that allows only one degree of freedom without the added distrac-
tion of a visual component on a computer screen. For example, a slider on a
mixer would have served as a better input device. In any case, the data col-
lected did provide sufficient results regardless of possible future improvements
in experimental design.

3In retrospect, they should have been required to start there.
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CHAPTER FOUR

Model Results

“Quod erat demonstrandum.”

The results of Experiments 1 and 2 clearly demonstrated that the musical fea-
tures explored in both studies have a significant and calculable impact on how
listeners perceive musical tension. Results from both experiments contributed
to a more global picture of how changes in individual musical parameters affect
changes in tension.

4.1 Experiment 1 analysis

As discussed in Chapter 3, there were nine possible graphical responses subjects
could choose from in Experiment 1 (Figure 3-1). A perusal of the data indicated
that subjects tended to select answers that reflected what they heard at the
very end of excerpts. Curves more complex than the first four response choices
were rarely selected even if they corresponded more closely to a salient musical
feature. It is possible that response choices such as those illustrated in Figures
3-1(f) and 3-1(g) depict more changes in tension than subjects could track and
recall with certainty.

4.1.1 Pitch height

In the case of pitch height and all subsequent parameters, subjects were con-
sidered to respond to the feature if they selected a tension curve that matched
the hypothesized tension curve for that feature. Figure 4-1(a) shows an example



that was used to determine how subjects responded to pitch height in isolation.
Figure 4-1(b) depicts the hypothesized answer for the example.

003000_s_003

(a) (b)

Figure 4-1: (a) Example where pitch height is the only feature changing. (b) The “correct”
answer corresponding to pitch height for (a).

Figure 4-2: Graph showing subjects’ responses to changes in pitch height.

Subjects responded very strongly to change in pitch height. There were a total
of 498 responses to questions where pitch height was the only feature present.
76% chose an answer which corresponded with the feature. Only 24% of subjects
chose any of the other eight responses (see Figure 4-2).1 In other words, if a
subject were given the example in Figure 4-1(a), the response was judged to
correspond to pitch height if the curve shown in Figure 4-1(b) was chosen.

It might be argued that one reason for this strong response could be the clear
mapping of pitch contour to graphical curve (at least more directly than for
other musical features).2

1N.B. the number of total responses for each category of musical examples analyzed is
present under each bar for all graphs.

2In the future, text-only response choices should be added as well. One reason for having
graphical response choices was to make it easier for people with limited knowledge of English
to take the study. Shortly before the data set for the analysis was downloaded, instruction
comprehension questions were added to assess if subjects understood English well enough to
understand the instructions. This makes it possible to evaluate the validity of data gathered
from subjects selecting from all-text response choices in the future.
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Figure 4-3: Four examples with varying degrees of change in pitch height.

Figure 4-4: Subjects’ responses to musical examples shown in Figure 4-3.

Results from other examples with changes in pitch height seem to indicate that
increases in magnitude of change are not directly proportional to the perception
that tension is changing. Figure 4-3 shows four examples with the same chord
progression, rhythmic values, and loudness. The only difference is the amount
of change in pitch height. The percentage of subjects responding to the pitch
height does not increase linearly with respect to the degree of change (Figure
4-4).
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4.1.2 Loudness

Pitch height is clearly an important parameter that contributes to tension. Even
the very presence of pitch, without any change, appears to have an effect. This
is shown in the next set of examples on loudness, which consist of notes that
were recorded with pitched instruments (piano and strings) even though the
pitch remained stationary (Figure 4-5). This most likely lessened the perceived
effect of loudness; while it was clear that loudness was an important factor—out
of 645 total responses, 42% chose the answer which corresponded to it while
58% chose one of the other eight responses—a large percentage (65%) of those
choosing an answer that did not correspond to change in loudness selected
the response indicating no change in tension (Figure 4-6). It might be safe to
assume that the monotonous presence of an unchanging, repeated pitch blunted
the results produced by change in loudness.

000200_s_017

(a) (b)

Figure 4-5: (a) An example designed to measure subjects’ responses to loudness. (b) Answer
corresponding to loudness for example shown in (a).

Figure 4-6: Graph showing subjects’ responses to all examples that have loudness as the only
changing feature.
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Figure 4-7: (a) An example designed to test subjects’ responses to onset frequency. (b) Answer
corresponding to onset frequency for example shown in (a).

Figure 4-8: Graph showing subjects’ responses to all examples where the only changing feature
is onset frequency.

accelerando

100000_s_020

Figure 4-9: An example designed to isolate and test tempo changes (a subcategory of onset
frequency). While tempo is the only feature changing, pitched notes are present, which might be
affecting the results. Subjects might not only be responding to changes tempo, but lack of pitch
change as well, thus dampening the perceived tension change.

4.1.3 Onset frequency

There is further evidence for this in examples that isolate onset frequency. In
general, subjects responded to onset frequency and tempo changes (Figure 4-
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Figure 4-10: Subjects’ responses to two types of examples featuring change in onset frequency.
The first set consists of examples recorded with pitched instruments (strings or piano) and the
second set consists of examples recorded with unpitched percussion. The presence of pitch in the
first set appears to have affected subjects’ responses to onset frequency.

8), though not quite as strongly as for loudness; out of 1716 total responses,
27% chose an answer which corresponded to onset frequency.3 However, this
percentage appears to be artificially low. In the case where examples (Figure
4-9) were recorded with three different timbres (piano, strings, and unpitched
percussion), sensitivity to onset frequency varied greatly. Out of a total of
360 responses to examples recorded with piano or strings, only 20% of the
answers corresponded with onset frequency changes while out of a total of 208
responses to the same examples recorded with unpitched percussion sounds,
48% corresponded with onset frequency (Figure 4-10).

4.1.4 Harmony

Harmony is considerably more complex than any of the other parameters be-
cause it is multidimensional and cannot be completely separated from pitch
contour. The harmonic tension values are calculated with Lerdahl’s tonal ten-
sion model without the melodic attraction component. Figure 4-11(a) shows

3While a response of 27% might not seem very significant, it is still far above the 11% that
a single response would receive on average if chosen randomly (1 out of 9).
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(a)

(b)

Figure 4-11: (a) An example used to test subjects’ responses to harmony. The prolongational
reduction is shown. (b) Answer corresponding to harmony for example shown in (a)

Event Distance Inherited
Scale

degree
Inversion

Non-

harmonic

tones

TOTAL

TENSION

1 (1,5) 0 0 1 0 0 1

2 (2,1) 5 0 1 2 1 9

3 (3,4) 6 6 1 0 1 14

4 (4,5) 6 0 1 2 1 10

5 - 0 0 1 0 0 1

Figure 4-12: Chart showing values required to calculate harmonic tension values using Lerdahl’s
model. Values correspond to the example in Figure 4-11.

one example designed to isolate harmony. It is annotated with the prolonga-
tional reduction necessary to calculate the tension values that determine the
shape of the corresponding tension curve (shown in Figure 4-11(b)). Figure
4-12 displays all of the variables that are required to evaluate the final tension
value for each chord in the example. For some of the harmony examples, differ-
ent voicings of the same chords were used in order to get an idea of how subtle
changes in pitch contour affected the results (Figure 4-13).
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033000_s_maj001

(a)

034000a_s_maj001

(b)

031000_s_maj001

(c)

Figure 4-13: Three examples designed to test subjects’ responses to changes in harmony. All
three contain the same chord progression but voiced slightly differently.

071000_s_min004

Figure 4-14: Harmonic changes paralleled by clear changes in pitch height (i.e. harmonic tension
increasing while pitch height increasing).

Figure 4-15: Graph showing subjects’ responses to all harmony examples and a subset of those
examples where pitch changes parallel harmonic movement.
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In general, subjects responded to harmony quite strongly. Out of 1580 re-
sponses, 37% corresponded to changes in harmony (Figure 4-15). The strongest
responses were for examples where the pitch contour very clearly coincided with
the change in harmonic tension (e.g. Figure 4-14); the response rate correspond-
ing to harmony for these example was much higher (79%). In cases where the
pitch changes were more subtle, as in Figures 4-13(a), 4-13(b), and 4-13(c), the
results were less clear but still seemed to indicate that movement in the salient
voices, either in correspondence or opposition to the harmony, were influential.
Another factor that mostly likely affected the results was melodic expectation
influenced by the tonal context. See Section 4.2.1 for further discussion on
melodic expectation.

4.1.5 Rhythmic irregularity

Rhythmic irregularity was the only feature tested in Experiment 1 that did not
yield positive results. Figure 4-16 shows one example in this category and its
hypothesized tension curve. Out of 602 total responses, only 2% felt changes
in rhythmic regularity affected their perception of musical tension. The single
most popular reply by far was no change in tension (Figure 4-17).

000020_s_016

(a)

(b)

Figure 4-16: (a) An example used to gauge subjects’ responses to rhythmic irregularity. (b)
Answer corresponding to rhythmic irregularity for example shown in (a)

In other examples where there were slight changes in the regularity of rhythmic
patterns (e.g. Figure 4-18), there seemed to be at least some effect from small
changes in onset frequency. For example, when the average onset frequency
increased slightly while the rhythm became less regular there appeared to be
a higher number of subjects feeling tension increase as irregularity increased.
Nevertheless, the numbers in both of these cases appears to be insignificant in
general (Figure 4-19). There is no evidence to support that the results were
affected by the presence of constant pitch because responses to both pitched and
unpitched versions of rhythmic irregularity examples did not differ significantly,
unlike the case of onset frequency.
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Figure 4-17: Subjects’ responses to examples where the only feature changing is rhythmic
regularity.

000020b_s_022

Figure 4-18: An example showing changes in rhythmic regularity as well as slight changes in
average onset frequency.

4.1.6 Interaction of features

When two features were paired so that one intensified while the other relaxed,
the results showed that they often counteracted one another. In the case of
loudness versus onset frequency, the initial results indicated that loudness had
a considerably stronger effect than onset frequency.

Figure 4-20 shows a musical example pairing loudness with onset frequency.
In the process of analyzing examples in this category, a problem was noted
concerning files with a crescendo on the final whole note. When recorded with
string sounds, there was a lack of decay on the final note; loudness continued
to increase at the end of the example while there were no more note onsets,
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Figure 4-19: Subjects’ responses to examples with changes in rhythmic regularity as well as
slight changes in average onset frequency.

resulting in the perception that loudness was the only feature changing. When
those examples were taken out (Figure 4-21), subject responses were closer to
even between the two features, with a slight edge given to loudness.

3
3

200100_s_non_005

Figure 4-20: Example used to compare changes in loudness and onset frequency.

In the case of harmony versus onset frequency (see Figure 4-22 for an example),
subjects appeared to respond more strongly to harmony. Out of 273 responses,
8% corresponded to onset frequency, and 17% corresponded to harmony. It
is possible that the numbers for harmony were a bit low because all of the
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Figure 4-21: Subjects’ responses to examples where loudness and onset frequency change in
opposite directions.

210000aa_s_min_005
3 3

Figure 4-22: Example used to compare changes in onset frequency with changes in harmony.

examples analyzed had a stepwise descent to the last note in the soprano line.
This might have strengthened the effect of decreasing onset frequency, adding
to the perception of decreasing tension at the end.

The comparison of features in various combinations of triplets yielded interest-
ing results. Figure 4-24 shows an example that combines loudness and onset
frequency against harmony. Graph 4-25 describes the different combination
(pairs against single features) and the subjects’ responses to them. In all cases,
the pairs together were stronger than the single feature. In all cases, loudness
seemed to be the most salient feature that listeners responded too, while har-
mony and onset frequency had about the same amount of influence. These
results might also have been slightly affected by the fact that the soprano line
stepped down on the last change in harmony.
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Figure 4-23: Subjects’ responses to examples where onset frequency and harmony are in op-
posing directions.

3
3

210100_s_maj_008

Figure 4-24: Example used for testing combinations of changing loudness, harmony, and onset
frequency.

When harmony, pitch height, and loudness were combined so that they changed
in the same direction (Figure 4-26), the results were very strong: out of 93
responses, 80% chose the answer that corresponded with the three features.
However, when pitch height and loudness were paired together against har-
mony (e.g. Figure 4-26), the responses showed more ambivalence: out of 485
responses, 60% chose the response which corresponded with pitch height and
loudness (Figure 4-27).4

4.1.7 Three corresponding features opposed by a fourth feature

This category of examples explored the effect of one particular feature in op-
position to three other features in concordance. In the case of harmony, the
results seemed to indicate that it had little effect on the overall perception of

4It must be noted that since the examples did not have the same harmonic progression, a
definite conclusion can’t be reached.
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Figure 4-25: Graphs of subjects’ responses to combinations of changing loudness, harmony, and
onset frequency.

071100_s_min007

Figure 4-26: Example used for testing combinations of changes in harmony, pitch height,
loudness.

increasing tension (Figures 4-28 and 4-32). Nonetheless, although the harmonic
progression clearly relaxes at the end, it fits a rather complex shape as a whole
(this shape is shown in Figure 3-1(f)); thus, it does less to directly counteract
the other features’ contribution to increasing tension.
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Figure 4-27: Graph of subjects’ responses to examples where harmony, pitch height, and loud-
ness are in parallel and examples where harmony changes in the opposite direction of pitch height
and loudness.

Both loudness and onset frequency seem to have weak effect when up against
the strength of three united features (Figures 4-29, 4-31, 4-33, and 4-35). Pitch
height fares considerably better (Figures 4-30 and 4-34).

151100_s_maj010

3

3

3
3

Figure 4-28: Example showing change in harmony against changes in onset frequency, pitch
height, and loudness.
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171200_s_009

3

3

3

3

3

3

Figure 4-29: Example showing change in loudness against changes in onset frequency, harmony,
and pitch height.

172100_s_014

3

3

3

Figure 4-30: Example showing change in pitch height against changes in onset frequency,
harmony, and loudness.

271100_s_012

3 3 3 3 3 3

Figure 4-31: Example showing change in onset frequency against changes in harmony, pitch
height, and loudness.
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Figure 4-32: Graph of subjects’ responses to examples with harmony against three other features.

Figure 4-33: Graph of subjects’ responses to examples where change in loudness goes against
changes in three other features.
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Figure 4-34: Graph of subjects’ responses to examples where change in pitch height goes against
changes in three other features.

Figure 4-35: Graph of subject responses to examples where change in onset frequency goes
against three other features.
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4.1.8 Musicians versus non-musicians

In order to compare results between musically experienced and musically in-
experienced subjects, the data was divided into two categories. In the first
category (17% of total) were subjects who rated their level of musical training
a 4 or higher on a scale of 1 to 5. The second category contained the rest of
the subjects (83%).

Figure 4-36: Graph comparing responses of subjects with considerable musical training with
subjects with less musical training.

For onset frequency, harmony, pitch height, and loudness, all of the examples
where each feature was present and not in correspondence with any other fea-
tures were selected to determine overall sensitivity to that feature. Responses
were categorized as either corresponding or not corresponding to the feature in
question. A graph showing the results is shown in Figure 4-36. Each feature has
two bars—one representing the response of musically experienced subjects and
the other representing musically inexperienced subjects. The absolute values of
the bars are not important; only the proportional differences between the two
bars in each group matter.

As can be seen from the graph, the clearest difference between musically ex-
perienced and inexperienced subjects was sensitivity to harmony, followed by
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sensitivity to onset frequency. Other studies have also indicated that musicians
are particularly sensitive to harmony [Bigand et al., 1996], [Parncutt, 1989].

Figure 4-37: Graph showing responses of subjects with considerable musical training to examples
with simple harmonic progressions and small changes in pitch.

Figure 4-38: Graph showing responses of subjects with less musical training to examples with
simple harmonic progressions and small changes in the melody line.
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There did not appear to be significant differences in responses to pitch height
and loudness. However, given that other studies have shown that musically
experienced subjects are more sensitive to harmony while musically inexperi-
enced subjects appear to be more responsive to pitch changes in the salient voice
(“horizontal motion” in [Bigand et al., 1996]), additional analysis was done in
order explore how musical background might have affected responses to pitch
height in the context of harmony. The examples analyzed were the same subset
as those discussed in Section 4.1.4. In general, the results (see Figures 4-37 and
4-38) lend some support to the results of previous studies.5

4.1.9 Summary

Analysis of Experiment 1 data clearly showed that all features tested with
the exception of rhythmic irregularity had a significant effect on subjects’ per-
ception of changing tension. In more complex examples where features were
counteracting each other, the relative importance of each feature appeared to
depend on its salience. When multiple features were combined in parallel, they
considerably strengthened the feeling of changing tension.

Overall, pitch height appeared to have the clearest effect (possibly because of
its more obvious mapping to the graphical curve), while onset frequency seemed
to have the weakest, particularly when opposed to other features. One thing
lacking was a quantitative way to compare the differences resulting from the
amount of change of each feature and how this amount might have affected the
result. This was only effectively shown for changes in pitch height (Figure 4-3).

The results of comparing responses of musically inexperienced and musically
experienced subjects indicate that musicians have a greater sensitivity to har-
mony and onset frequency. While it appears that non-musicians were slightly
more responsive to changes in pitch height when comparing examples featuring
simple harmonic progressions and small changes in pitch, this might be the re-
sult of sensitivity (or lack of it) to harmony. In other words, given a non-tonal
context, all subjects, regardless of musical background, might respond similarly
to changes in pitch, but in a tonal context, musicians are drawn more to har-
monic motion, thus dampening the effect of pitch change if it’s in opposition to
harmonic direction.

It is important to note that in order to make it absolutely clear that musical fea-
tures were changing in one “direction” or another, the examples had to be short
and often exaggerated—pitch height dropped or jumped dramatically, loudness
levels went from one extreme to another, the rhythm sped up or slowed down
without any subtleties in timing. The only feature where such exaggerations

5As noted in [Bigand et al., 1996], even small changes in the soprano voice seem
to have an effect. The perceptual salience of the higher, outer voice has been re-
ported in other experimental studies as well ([Francès, 1958], [Palmer and Holleran, 1994],
[Thompson and Cuddy, 1989]).
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were not utilized was harmony. In general, the obviousness of a changing feature
most likely had an effect on how much it influenced the perceived tension.

4.2 Experiment 2 Analysis

The goal of Experiment 2 was to define a model that could quantitatively
describe and predict the subject data (slider values corresponding to perceived
tension at any given point in time in an excerpt) given descriptions of the
way each musical feature changed and contributed to tension over time in the
excerpt. Assuming these descriptions to be accurate, a new, global model of
tension could be implemented—a new model that could predict overall tension
by taking into account how all the individual features detracted or contributed
to increases or decreases in perceived tension at any point in the excerpt.

4.2.1 Feature graphs

All of the musical parameters confirmed in Experiment 1 as well as one addi-
tional parameter were quantitatively described for each excerpt. These descrip-
tions or feature graphs included the following parameters:

• Harmonic tension

• Melodic Expectation

• Pitch height for soprano, bass, and inner voices

• Dynamics (loudness)

• Onset frequency

• Tempo

None of the excerpts required all of the possible feature graphs. For example,
if there was no change in tempo throughout an excerpt, the graph representing
it (all zeros) was not required.

For discussion purposes, the 10 musical examples used in Experiment 2 will be
referred to as Q01–Q10. See Appendix A for scores of all the excerpts.

Pitch height and melodic expectation

Most examples did not require more than one or two pitch height graphs (so-
prano and bass lines for the most part). The only example that had four
separate graphs (for soprano, two inner voices, and bass) was Q08 (Schönberg).
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Figure 4-39: Graph showing pitch height values over time for Q05 (Bach-Vivaldi).

s1      6    4      5     4      5          5        4          5          4         5            6      4     5     4      5        5        4          5          4         5

m1    1    1      1     1      1          2/3     1          1          1         1            1      1     1     1      1     2/3     1          1          1         1

p1     1    32    36   32    32        24      36        36        36        36          9     32   36   32    32       24  36        36        36       36

d1     0    0      12   20    12        6        0          0          0          0            20   25   12   20    12        6        0          0          0         0

-----------------------------------------------------------------------------------------------------------------------------------------------------------

i        6    128  192 148  172      86      144      180      144      180        74  153 192 148   172      86      144 180      144     180

s2        6                           5                      5                      5                       6          5                      5                     5

m2      1                           1                      2/3                   2/3                    1      1                      2/3                  2/3

p2       1                           9                      24                    24                     9       9                      24                   24

d2       0                           0                      0                      6                       0         25                    0                     6

----------------------------------------------------------------------------------------------------------------------------------------------------------

j          6                           45                   80                    86                      54       70                    80                   86

6  96  144  111  140.25  64.5    108       155      108    156.5      69  114.75 144 111  146.5  64.5    108     155     108      156.515i+5j_____

20

Figure 4-40: First page of analysis showing how melodic expectation values are calculated for
Q05 (Bach-Vivaldi). i values consist of direct note-to-note level expectations, and j values consist
of high-level patterns based on salience and metrical placement. s represents stability ratings, m
represents mobility ratings, p represents proximity ratings, and d represents direction ratings. The
values between the two staves are the final melodic expectations ratings for each note.

Figure 4-41: Melodic expectation graph for Q05 (Bach-Vivaldi).

The individual pitch height values were not connected by linear interpolation.
Since the x-axis of the graph spanned the time of the excerpt, the values were
extended for their respective durations, resulting in a step-like graph. This
graph format was the same for other features with values that change at discrete
time intervals.

While pitch height is an important factor in how listeners perceive tension, it’s
also somewhat crude. It does not take into account some of deeply schematic
expectations of melodic contour described in Narmour’s theory as well as the
tonal implications. So in addition to pitch height, a graph was added that
described melodic expectation. Margulis’ model of melodic expectation (see
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Chapter 2), with a few minor adjustments, was used to analyze the examples
(see Figures 4-40 and 4-41).

Loudness model

The graphs for loudness were derived directly from the audio files used in
the experiment. The values were produced with Jehan’s psychoacoustic loud-
ness model [Jehan, 2005], which takes into account outer and inner ear filter-
ing (more or less the equivalent of the Fletcher-Munson curves at an aver-
age pressure level6), frequency warping into a cochlear-like frequency distribu-
tion, frequency masking, and temporal masking [Moore and Glasberg, 1995]
[Zwicker and Fastl, 1999] [Glasberg and Moore, 2002]. Frequency warping
models how the inner ear (cochlea) filters sound. Frequency masking is a phe-
nomenon that occurs when frequencies are close to one another—so close that
listeners have difficulty perceiving them as unique. Temporal masking is based
on time rather than on frequency. Humans have trouble hearing distinct sounds
that are close to one another in time; for example, if a loud sound and a quiet
sound are played simultaneously, the quiet sound will be inaudible. However,
if there is enough of a delay between the two sounds, the quieter sound would
be heard.

Figure 4-42: Loudness curve of Q03 (Beethoven). The blue line is the perceived loudness in dB
produced by Jehan’s psychoacoustic model and the red line is the smoothed version used for the
feature.

The feature graph values are measured in dB with a reference silence at -60dB.
A point was computed every 256 samples at 44100 Hz with a window length of
4096 samples. The results were then filtered to obtain a smooth curve (Figure
4-42).

6Fletcher-Munson curves show that human hearing is most sensitive in the frequency range
of 2000Hz to 5000Hz [Fletcher and Munson, 1937].
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Figure 4-43: Graph showing onset frequency in Q05 (Bach-Vivaldi).

Figure 4-44: Graph showing change in tempo for Q09 (cadence with crescendo and ritardando).

Onset frequency and tempo

Even though there were some descriptive overlaps, tempo and onset frequency
were treated separately and given individual feature graphs. Figure 4-43 shows
the onset frequency graph for Q05 (Bach-Vivaldi).

Figure 4-45: Graph showing beat and onset markings in red for Q05 (Bach-Vivaldi). The pitch
height graphs for the melody and bass line have been added in blue and green for reference.

In addition to the feature graphs, a vector was generated for each example
consisting of all zero values except at points in time where note onsets, beats,
and downbeats were present (Figure 4-45). Binary values were assigned to the
three labels: onset (1), beat (2), downbeat (4). These values were summed as
needed.
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Figure 4-46: Harmonic tension feature graph Q05 (Bach-Vivaldi). The x-axis represents time,
and the y-axis, tension values.

Harmonic tension

Harmonic tension was by far the most complex feature described. Given that
Lerdahl’s tonal tension model was already supported by empirical evidence
and quantitative in description, it was ideal for analyzing each excerpt and
producing harmonic tension values. Lerdahl’s theory is explained in Chapter 2;
it is used in its entirety except for the melodic attraction rule which is partially
represented in the melodic expectation graph.

As in the case of the simple harmonic progressions analyzed in excerpts from
Experiment 1, the first step in the analysis process was to produce a prolonga-
tional reduction of each example. Figure 4-48 shows the prolongational analysis
for Q05 (Bach-Vivaldi); Figure 4-47 shows how the tonal tension values are cal-
culated. The resulting harmonic tension graph of Q05 is shown in Figure 4-46.

The harmonic tension graph for Q08 (the atonal Schönberg excerpt) was calcu-
lated differently from the tonal examples.7 Each chord was assigned a tension
value based on the interval classes it contained. This was done by assigning
each interval class (six total) a value corresponding to its relative harmonic
dissonance (Figure 4.1). The final tension value given to a chord consisted of
the sum of the values associated with the interval classes found in that chord.

Interval Class Value

P5 or P4 1
M3 or m6 2
m3 or M6 3
M2 or m7 4
m2 or M7 5
A4 or d5 6

Table 4.1: Interval classes and their assigned values based on relative dissonance.

7An atonal prolongational reduction (described in [Lerdahl, 2001]) was not considered but
not used.
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Chords i j k Inherited
Scale

degree
Inversion

Non-

harmonic

tones

TOTAL

d(1) i 0 0 0 0 0 0 0 0 0 d(1)

d(2,1) i - i 0 0 0 0 0 1 0 0 1 d(2,1)

d(3,4) iv - i 0 1 4 5 0 1 0 0 6 d(3,4)

d(4,2) i - i 0 0 0 0 0 1 0 0 1 d(4,2)

d(5,6) iv - i 0 1 4 5 0 1 0 0 6 d(5,6)

d(6,4) i - i 0 0 0 0 0 1 0 0 1 d(6,4)

d(7,1) i - i 0 0 0 0 0 1 0 0 1 d(7,1)

d(8,9) iv - i 0 1 4 5 0 1 0 0 6 d(8,9)

d(9.7) i - i 0 0 0 0 0 1 0 0 1 d(9.7)

d(10,11) iv - i 0 1 4 5 0 1 0 0 6 d(10,11)

d(11,9) i - i 0 0 0 0 0 1 0 0 1 d(11,9)

d(12,1) i - i 0 0 0 0 0 1 0 0 1 d(12,1)

d(13,14) ii2 - V 0 1 5 6 5 1 2 1 15 d(13,14)

d(14,1) V - i 0 1 4 5 5 1 0 0 11 d(14,1)

d(15,14) V-V 0 0 0 0 5 1 0 0 6 d(15,14)

d(16,17) i-V 0 1 4 5 5 0 0 0 10 d(16,17)

d(17,15) V-V 0 0 0 0 5 1 0 0 6 d(17,15)

d(18,19) i-V 0 1 4 5 5 0 0 0 10 d(18,19)

d(19,17) V-V 0 0 0 0 5 1 0 0 6 d(19,17)

d(20,14) V-V 0 0 0 0 5 1 0 0 6 d(20,14)

d(21,22) i-V 0 1 4 5 5 0 0 0 10 d(21,22)

d(22,20) V-V 0 0 0 0 5 1 0 0 6 d(22,20)

d(23,24) i-V 0 1 4 5 5 0 0 0 10 d(23,24)

d(24,22) V - V 0 0 0 0 5 1 0 0 6 d(24,22)

d(25,26) V - i 0 1 4 5 0 1 0 0 6 d(25,26)

d(26,1) i - i 0 0 0 0 0 0 0 0 0 d(26,1)

d(27,26) i6 - i 0 0 0 0 0 1 2 0 3 d(27,26)

d(28,29) iv6 - III6 0 2 6 8 7 0 2 1 18 d(28,29)

d(29,26) III6 - i 0 3 4 7 0 0 2 1 10 d(29,26)

d(30,29) ii6 - III6 0 2 6 8 7 1 2 1 19 d(30,29)

d(31,32) IV6 - iii6 0 2 6 8 2 0 2 1 13 d(31,32)

d(32,26) iii6/Bb - i/d 2 0 0 2 0 0 2 1 5 d(32,26)

d(33,34) iv6 - V 0 2 6 8 11 0 2 0 21 d(33,34)

d(34,35) V - i 0 1 4 5 7 1 0 0 13 d(34,35)

d(35,42) i - i 0 0 0 0 7 0 0 0 7 d(35,42)

d(36,37) iv - i 0 1 4 5 7 1 0 0 13 d(36,37)

d(37,35) i - i 0 0 0 0 7 0 0 0 7 d(37,35)

d(38,39) iv64 - i 0 1 4 5 7 1 2 0 15 d(38,39)

d(39,37) i - i 0 0 0 0 7 0 0 0 7 d(39,37)

d(40,41) ii65 - V7 0 1 5 6 13 1 2 1 23 d(40,41)

d(41,42) V7 - i 0 1 5 6 7 1 0 1 15 d(41,42)

d(42,26) i/a - i/d 1 1 5 7 0 0 0 0 7 d(42,26)

d(43,42) i6 - i 0 0 0 0 7 1 2 0 10 d(43,42)

d(44,45) iv7 - i6 0 1 4 5 7 1 0 1 14 d(44,45)

d(45,42) i6 - i 0 0 0 0 7 1 2 0 10 d(45,42)

d(46,45) ii - i6 0 2 6 8 7 1 0 0 16 d(46,45)

d(47,46) ii2 - ii 0 0 1 1 15 1 2 1 20 d(47,46)

d(48,49) vii7 - V9 0 3 4 7 14 1 0 1 23 d(48,49)

d(49,50) V9 - i 0 1 6 7 7 1 0 4 19 d(49,50)

d(50,42) i - i 0 0 0 0 7 1 0 0 8 d(50,42)

d(51,50) i6 - i 0 0 0 0 7 1 2 0 10 d(51,50)

d(52,53) V7 - i 0 1 5 6 19 1 0 1 27 d(52,53)

d(53,50) i/g - i/a 2 2 8 12 7 1 0 0 20 d(53,50)

d(54,55) V2 - I 0 1 5 6 28 1 2 1 38 d(54,55)

d(55,53) I/C - i/g 2 1 6 9 19 1 2 0 31 d(55,53)

d(56,57) V7-i 0 1 5 6 26 1 0 1 34 d(56,57)

d(57,53) i/d-i/g 1 1 5 7 19 1 0 0 27 d(57,53)

d(58,57) i 6 - i 0 0 0 0 26 1 2 0 29 d(58,57)

d(59,60) vii6 - V7 0 3 4 7 25 1 2 0 35 d(59,60)

d(60,61) V7 - i6 0 1 5 6 19 1 2 1 29 d(60,61)

d(61,53) i/g-i/g 0 0 0 0 19 1 2 0 22 d(61,53)

d(62,61) i/g-i/g 0 0 0 0 19 1 0 0 20 d(62,61)

d(63,62) V7/ii - i 2 3 9 14 19 1 0 1 35 d(63,62)

Figure 4-47: Chart of harmonic tension calculations for Q05 (Bach-Vivaldi). δ is the sum of i,
j, and k.
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Figure 4-49: Subject and feature data graphs for Q09 (cadence with crescendo and ritardando).
The first window shows 10 out of the 132 subject responses for Q09 (number of subjects multiplied
by number iterations = total number of responses: 33 * 4 = 132). The second window shows the
mean of the subject responses. The third window shows the corresponding feature graphs. The
plus-signs (+) indicate the beat positions. H = harmony, L = loudness, M = melodic expectation,
O = onset frequency, PB = pitch height of bass line, PS = pitch height of soprano line, and T
= tempo (note that there is no graph line for PB because Q09 has no bass line).

4.2.2 Linear correlation of individual features with empirical data

The first step in the analysis process was to get an idea of how each feature graph
for each example correlated with the subject data. Feature graphs and subject
data were down-sampled to 50Hz and then normalized. Normalization consisted
of first subtracting the mean of each graph from all its points and then making
them unit variance by dividing by the standard deviation. The former was done
in order to take into account differences in slider offsets at the beginnings and
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FEATURE r p r p

Q01

H 0.38326261 0.00000000 0.43355306 0.18280565

L 0.95770874 0.00000000 0.96374109 0.00000183

M 0.88679215 0.00000000 0.91281422 0.00008796

PS 0.84125444 0.00000000 0.85739264 0.00074120

Q02

L 0.03171998 0.53975753 0.06167140 0.83410704

M 0.29503266 0.00000001 -0.47081815 0.08928231

O -0.99303721 0.00000000 -0.99565072 0.00000000

PS 0.99178999 0.00000000 0.99421407 0.00000000

T -0.98604293 0.00000000 -0.98737709 0.00000000

Q03

H -0.56474740 0.00000000 -0.53191054 0.03394465

L 0.68648549 0.00000000 0.75058018 0.00080790

M -0.15004340 0.00000060 -0.16156906 0.54997260

O 0.20892201 0.00000000 0.22356635 0.40521871

PB 0.32655890 0.00000000 0.29542534 0.26662375

PS 0.17267138 0.00000001 0.10862305 0.68883575

Q04

L -0.56967372 0.00000000 -0.55952130 0.04678283

M 0.45872641 0.00000000 0.69571514 0.00827215

O 0.01942902 0.77144141 -0.00029911 0.99922622

PS 0.84035010 0.00000000 0.81356491 0.00071614

Q05

H 0.60318666 0.00000000 0.62983991 0.00000000

L -0.01555631 0.39585532 -0.01885915 0.85605443

M -0.08317103 0.00000544 -0.23830955 0.02003895

O 0.33901234 0.00000000 0.34609011 0.00059163

PB 0.04860168 0.00795353 0.23778107 0.02032427

PS -0.21903811 0.00000000 -0.23336413 0.02284824

Figure 4-50: Table showing correlation results for Q01–Q05. H = harmony, O = onset frequency,
L = loudness, M = melodic expectation, PS = pitch height of soprano line, PB = pitch height
of bass line, and T = tempo. The first two columns of r and p-values are for all data points (50
points sampled per second). The second two columns are for data sampled at every beat or note
onset. Negative r-values indicate inverse correlation.

ends of sample sets. The latter was required to level the relative differences in
change between subjects without altering the information. For example, two
subjects might respond differently on an absolute scale but very similarly on
a relative scale—one subject might move the slider on average 2 units for a
certain amount of change in tension while another subject would move it 10
units for the same change. Figure 4-49 shows the normalized subject data,
mean subject data, and feature data graphs for Q09 (cadence with crescendo
and ritardando). The mean of the subject data is important because it was
used in the subsequent analyses.
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FEATURE r p r p

Q06

L 0.12251220 0.10133820 0.11579722 0.65807578

O 0.47023323 0.00000000 0.40735346 0.10460470

T 0.63220668 0.00000000 0.56879954 0.01718548

Q07

H 0.86605972 0.00000000 0.87550465 0.00000005

L 0.29724263 0.00000000 0.54700111 0.00691031

M 0.59865184 0.00000000 0.58420386 0.00342108

O 0.00825482 0.82693068 0.02839480 0.89766780

PS -0.76008177 0.00000000 -0.76858978 0.00001836

Q08

H 0.35387302 0.00000000 0.54308325 0.00740763

L 0.69999235 0.00000000 0.66950768 0.00047573

M 0.11774979 0.00063677 0.14294902 0.51525112

O 0.66002918 0.00000000 0.70905500 0.00015199

PB 0.61870943 0.00000000 0.67365974 0.00042538

PS 0.15661050 0.00000524 -0.32528319 0.12988818

Q09

H -0.70343061 0.00000000 -0.71111435 0.07320188

L 0.96800235 0.00000000 0.95582008 0.00076941

M 0.72414543 0.00000000 0.72889239 0.06311496

O -0.86898707 0.00000000 -0.84906249 0.01564570

PS -0.78338548 0.00000000 -0.78189104 0.03779292

T -0.74667546 0.00000000 -0.74942791 0.05246286

Q10

H -0.20143758 0.00000000 -0.20610314 0.09685901

L 0.79220361 0.00000000 0.77912673 0.00000000

M 0.01799613 0.39384982 0.08909404 0.47684226

O 0.18491712 0.00000000 0.14831473 0.23464471

PB 0.20922164 0.00000000 0.23286939 0.05988333

PS -0.21371263 0.00000000 -0.15297703 0.22009385

Figure 4-51: Table showing correlation results for Q06–Q10. H = harmony, O = onset frequency,
L = loudness, M = melodic expectation, PS = pitch height of soprano line, PB = pitch height
of bass line, and T = tempo. The first two columns of r and p-values are for all data points (50
points sampled per second). The second two columns are for data sampled at every beat or note
onset. Negative r-values indicate inverse correlation.

In general, it was difficult to correlate the feature graphs with the subject data
because of the jagged edges of the former were at odds with the smooth curves
of the slider movements.8

The r (Pearson’s correlation coefficient) and p-values resulting from the corre-
lation are shown in Figures 4-50 and 4-51. The first two columns of values are

8To simplify the analysis, all of the inner voice feature graphs were removed, and only the
bass and soprano lines were considered. Derivatives of the feature graphs (e.g. change in
loudness in addition to absolute loudness) were considered but thrown out in the end.
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correlations done with all the points in the graphs (50 samples per second). The
second pair of values correspond to a correlation done with only points sampled
every beat (or if an example does not have beats, onset values). Negative values
indicate inverse correlation.

The reason why the p-values are so low in the original set is because of the large
number of samples constituting the feature graphs and subject data, all of which
are continuous functions. In other words, the samples are not independent of
each other; any two adjacent values (at time t = n and t = n+1) are very similar
because they change very little. The definition of p requires that these values
are independent, and this requirement is not satisfied. Even if the correlation
values are valid, the p-values are not.

The correlation values represent the relative importance of each feature for each
excerpt. For example, the loudness graph does not correlate at all with the sub-
ject data for Q05 (Bach-Vivaldi) while it does significantly for Q3 (Beethoven).
This makes sense because there are only very subtle and not clearly defined
fluctuations in dynamics for Q05 while there are very obvious and clear trends
in Q03. In other words, the importance of the feature is proportional to its
salience. However, it must be noted that these results can be misleading if
there are nonlinear effects, as a linear correlation is not going to capture them.
Nevertheless, it still gives a very good indication of which features are more
important than others for each example.

4.2.3 Musical experience

There appears to be some evidence corroborating the results from Experiment 1
regarding differences between musically experienced and inexperienced subjects
and sensitivity to harmony. Subjects were placed in one or the other category
much in same way as they were in Experiment 1: those categorized as musically
experienced rated themselves a 4 or higher on a scale of 1 to 5 describing their
overall level of musical training. Given this criteria, 15 out of 33 subjects were
placed in the musically experienced category.

Figure 4-52 shows the subject data mean for Q01, a simple example where
the harmony resolves at the end but the pitch contour rises. The responses
from the musically inexperienced subjects followed the rise of the pitch con-
tour at the end, while the musically experienced subjects appeared to respond
more strongly to the harmonic resolution. This supports Experiment 1 results
that show musicians respond more strongly to harmony than non-musicians in
examples with simple chord progressions.
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Figure 4-52: Subject data mean for Q01 (simple chord progression with rising melodic line).
The red line represents the average response of musically experienced subjects and the blue line
represents responses of musically inexperienced subjects.

4.2.4 The goal: a predictive model

The final step was the implementation of a model that mathematically de-
scribed and predicted how listeners perceived tension in an excerpt given how
the feature graphs described the changing musical parameters in the excerpt.
As noted before, these feature descriptions—three of which were based on other
theories (Lerdahl’s tonal tension model, Margulis’ melodic expectation model,
and Jehan’s psychoacoustic loudness model)—were assumed to be accurate rep-
resentations of their respective musical parameters.

Linear and nonlinear regression were performed in an attempt to fit the subject
data with the feature descriptions and then predict results for new data. It was
assumed that tension could be expressed as time-varying function of a set of
musical parameters, resulting in the following basic formula:

P (t) = F (o, h, p, l, t,m) (4.1)
= F (x̂) (4.2)

where o = onset frequency, h = harmony, p = pitch height, l = loudness, t =
tempo, and m = melodic expectation.

The goal was to approximate F so that it matched the subject data as accurately
as possible. Initially, three types of models were considered:
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(A) Linear models

F (x̂) = b0 + b1x1 + b2x2 + ... (4.3)

Linear models are easiest to handle and best understood in machine learning.
Coefficients can be identified through a simple matrix inversion. Given the
small number of dimensions required in this case, computational resources are
not issue. However, linear models only work properly for linear systems. Any
kind of nonlinear interaction between the parameters cannot be represented
with this type of model.

(B) Polynomial models and generalized linear models
Generalized linear models, also referred to as a linear coefficient models have
the following form:

F (x̂) =
∑

i

bifi(x̂) (4.4)

The most popular form of a generalized linear model is a polynomial model:

F (x̂) =
∑

i

bix
a1,i

1 x
a2,i

2 ... (4.5)

Generalized linear models are nonlinear models that retain some of the proper-
ties of linear models. Most importantly, they can be trained by a simple matrix
inversion. These models are likely to be a good compromise between descriptive
power and model complexity for the task at hand.

(C) Nonlinear coefficient models

F (x̂) =
∑

i

fi(b̂i, x̂) (4.6)

Nonlinear coefficient models allow for any imaginable basis function. The de-
scriptive power of these models is limitless as is the computational effort to
train them.

In preparation for the regression analysis, feature graphs were smoothed with a
raised-cosine (moving-average) filter to remove the sharp edges and discon-
tinuities. This was necessary because while much of the feature data had
very sharp edges (particularly in the case of step functions), the subject data
was smooth because people tended to use gradual motions to indicate tension
changes. Given this disconnect between the features and subject data, it would
be very difficult for a model (linear model in particular) to estimate the sudden
changes.

Both linear regression (also known as multiple regression) and polynomial re-
gression were performed on the first part (training data) of each example. The
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Figure 4-53: The first window shows the results of linear regression for Q09 (cadence with
crescendo and ritardando). The blue line represents subject data and the red line represents the
model. The vertical line indicates the division between training data for the model and out of
sample data used for prediction. The second window shows the smoothed feature graphs.
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Figure 4-54: The first window shows the results of polynomial (quadratic in this case) regression
for Q09 (cadence with crescendo and ritardando). The blue line represents subject data and the
red line represents the model. The vertical line indicates the division between training data for
the model and out of sample data used for prediction. The second window shows the smoothed
feature graphs.

results were then used to predict the second part (the out of sample data).
While the linear model worked fairly well for most of the examples, there were
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Figure 4-55: The first window shows the results of linear regression for Q10 (Brahms). The
blue line represents subject data and the red line represents the model. The vertical line indicates
the division between training data for the model and out of sample data used for prediction. The
second window shows the smoothed feature graphs.
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Figure 4-56: The first window shows the results of polynomial (quadratic in this case) regression
for Q10 (Brahms). The blue line represents subject data and the red line represents the model.
The vertical line indicates the division between training data for the model and out of sample data
used for prediction. The second window shows the smoothed feature graphs.

cases where the quadratic model performed more successfully. This suggests
that a fairly simple nonlinear model can do better than a linear model in some
cases.
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Figures 4-53 and 4-54 show the results of regression analysis performed on Q09.
The results to the left of the vertical line show the model’s fit of the training
data. Results to the right are predictions by the model for the out of sample
data. The quadratic model in this case is clearly better—it appears to capture
the complexity of feature interactions in a way a linear model cannot.

Figures 4-55 and 4-56 show a case where a linear model works better. The
quadratic model fits the data very well for the first part of Q10, but then
diverges in second part. This example and others indicate that while it is
possible to have an almost perfect fit of the training data by using higher-order
models, the divergence for the out of sample data clearly shows that there is a
danger of overfitting.

In conclusion, it appears that a fairly simple nonlinear model is sufficient to
capture the complexity of the problem. For the most part, a linear model was
adequate, however, there were some cases where polynomial models provided a
better fit for both the training data and out of sample data. A general issue
that needs to be considered is the fact that the training data in some examples
was not sufficient enough to produce a robust model. Particularly in the case
of short examples, the brief time-span of musical events covered by the training
data did not contain the necessary information to adequately predict responses
for future situations; the accuracy of predictions are always dependent on the
range of events that have already occurred.

4.3 Note on implementation of analysis tools

Scripts for preparing and processing data from both experiments were written
in Perl. Additional Perl scripts and Excel spreadsheets were implemented for
the statistical analysis of Experiment 1. Programs for analyzing data from
Experiment 2 and building the model were written in Matlab using the CWM
toolkit [Schoner, 2000]. In addition, an application was written in C++ and
OpenGL (see Figure 4-57) to aid in visualizing and comparing subject data
and feature graphs. The web-based application for Experiment 1 was written
in Flash and PHP and the interface for Experiment 2 was written in C++ using
the Win32 API.
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CHAPTER FIVE

Applications

“Longum iter est per praecepta, breve et efficax per exempla.”

– Seneca

Implementing an automated or computer-assisted composition system that gen-
erates music based on aesthetic or structural criteria is a difficult task. There
are many steps required to define how an overarching description is translated to
the note level. This process could be aided by a tension model, a tool especially
relevant to the design of a musically “intelligent” system.

While existing computer-based composition environments might be able to gen-
erate music that sounds plausible or grammatically correct (at least on a small
scale), the criteria for generating the material are usually purely mechanical and
not aesthetically motivated at a higher level. Composing music is not just about
putting together chords that follow logically, or patterns that are employed sys-
tematically. It is essential for these systems to have an understanding of music
that goes beyond pitch sets, harmony, motivic patterns, phrases, and forms—
they need to have some idea of the meaning of music. If a system has the
ability to identify and measure tension, it might be possible for it to behave
more creatively.

One such computer-assisted composition system that could benefit from a ten-
sion model is Hyperscore. Hyperscore is an application that facilitates compo-
sition by associating musical features with graphical abstractions. Lines drawn
in the Hyperscore are interpreted according to shape, color, and position and
converted into pitches and rhythmic values. There are two key creative aspects
that are entirely in the hands of the users: composing short melodies or motivic
material and describing (visually) the large-scale shape of a piece. Providing



graphical means to engage in these two activities form the basis for Hyperscore’s
functionality [Farbood et al., 2004]. As mentioned earlier, the methodology in
Experiment 1 was influence by the idea of line shapes in Hyperscore.

5.1 The original tension line in Hyperscore

The very first version of Hyperscore (Figure 5-1) was almost entirely auto-
mated.1 The user drew a tension line, and the program then interpreted the
shape of the line and generated a piece of music according to the shape and
texture of the line. The line was parsed by the program into parabolic sections
which were then interpreted as tension-release sections. The user selected all or
a subset of nine pre-composed motives which were used to generate the piece.
The generating function created five independent musical lines for each piece,
all of which were generated sequentially. The main voice was generated in a
different manner than the other four voices. The computer randomly chose one
of the user-selected motives and added it to the main voice. The main voice was
intended to serve as the anchor for the piece. It insured that at any point in
time, there was some active motivic material playing. The other voices served
as elaborations of the main voice. These elaborations were generated based
on the tension value of the user-drawn curve. Depending on this value, the
motive itself, a counter-motive, or rests were inserted. The tension value was
determined by the sectioning of the line and the average bumpiness measure for
each section. For example, if the curve was very smooth, the rhythmic texture
would be less dense because there was a higher chance of rests being generated.

There were no deterministic thresholds in making these decisions. The tension
value could only influence the overall effect produced by the combination of
voices. Finally, the volume for each note was scaled to match the y-value of the
curve. The algorithm used in Version 1 was primitive but surprisingly effective
in producing musical textures that appeared to match the tension curve of the
line. However, it lacked many important features that make music interesting—
there was no sense of phrasing and no harmonic movement. Although there was
some feeling of tonality, it was mainly a result of the general consonance created
by a largely diatonic set of motives. Another feature lacking was the ability to
annotate the tension curve in order to specify exactly what motivic material
should be used.

5.2 Later versions

Version 2 (Figure 5-2) was the first attempt to experiment with annotations to
the tension line. The graphical interface of Hyperscore completely redesigned2

and the concept of colored “pens” introduced. This interface allowed users

1All versions of Hyperscore were written in C++ for the Windows platform.
2Egon Pasztor joined the project at this time and implemented the subsequent interfaces.
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Figure 5-1: Screenshot of the first version of Hyperscore. The green line is drawn by the user,
the blue, red, and white lines are added by the computer. The blue lines show the computed
section divisions, the red lines show the min and max boundaries of the section, the white lines
represent the estimated curves.

to indicate where and what kinds of melodic material were used by selecting
and drawing with a color that was mapped to the motive. The annotation’s
proximity to the tension curve influenced what motive was selected by the
generation algorithm. Since the tension curve was now a free-form line that
could be drawn anywhere on the screen, a new localized texture measure was
applied to determine the tension value.

Another new feature of Version 2 was the harmony generator. This algorithm
was implemented using hierarchical Markov chains to handle different layers
of organization. One set of Markov chains was used to generate a series of
higher-level harmonic functions, and another set was used to generate the ac-
tual chords. The chord functions were simple, consisting only of three cate-
gories: tonic, dominant, subdominant. Chord function transition probabilities
were selected based on the time at which the chord occurred and the function
of the chord preceding it. The chords themselves were chosen according to
time and relative frequency at which the chord would appear regardless of the
circumstances (i.e. not dependent at all on the preceding chord).
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Figure 5-2: Screenshot of Hyperscore Version 2. The red pen, which has no motive attached
to it, is used to draw the main curve. The other pens are for making annotations to the red line.
The graphs below the drawing window indicate the prominence of each motive (colored lines) as
well as the curviness of the tension line (white graph line) at any given point in time. The halo is
a snapshot of a blinking cursor indicating playback position.

While the harmony generator did add more depth to the music composed, it was
too simplistic to work with anything longer than half a minute of music since
the progressions tended to meander without any sense of phrasing or direction.
Nevertheless, the algorithm was able to produce some satisfactory progressions
on occasion. It also became clear, after some user-testing, that people were
often confused by what the computer was doing in response to the drawing.
The bumpiness to rhythmic activity map in Version 1 was clearer because the
segmentation algorithm provided a better visualization of the texture in a given
area. The way annotations were interpreted in Version 2 was also unclear to
users, particularly those with no musical training.

After considering the problems encountered in Versions 1 and 2, a different
approach was devised for associating motives with annotations which involved
more human decision-making and less automatic generation. Instead of in-
fluencing the decision-making process of the computer, the annotations deter-
ministically dictated them. One significant result of this change was that the
tension line ceased to function in an algorithmically interesting way and was
reduced to a timeline and volume scale.3

3For more detailed information on Hyperscore Versions 1-4, see [Farbood, 2001].
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Figure 5-3: Screenshot of Hyperscore Version 4. This version allowed users to enter their own
motives instead of using pre-composed ones.

5.3 Final Hyperscore version

Hyperscore’s development at this point (Version TS) took a more practical
turn due to its role as the primary vehicle for composition activities in Tod Ma-
chover’s Toy Symphony, a large project bringing together children and profes-
sional orchestras through the aid of technology. The goal of Toy Symphony was
to introduce children to creative music-making with specially designed hardware
and software. These tools allowed children to perform on stage with musicians
as well as compose music that was performed by orchestras. It was essential to
have a version of Hyperscore for Toy Symphony that was not just experimental
in nature, but developed enough for users to compose original pieces of high
quality. During the course of the Toy Symphony project (2002-2005) children
from all over the world worked with the software to compose pieces for string
orchestra, some of which were performed in concert by professional orchestras
such as the BBC Scottish Symphony and the Deutsches Symphonie-Orchester
Berlin [Machover, 2003].

Version TS incorporated 3D DirectX graphics to expand the visual environment.
The sketch window evolved from a static, finite space to an expansive zoomable
canvas where users could create any number of motives and pieces. These two
types of musical material were encapsulated in individual windows that could
be positioned anywhere on the canvas and viewed at four different zoom levels
for ease of editing.
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Figure 5-4: A Version TS Hyperscore rendering of the exposition of the first movement of
Beethoven’s Fifth Symphony.

The first step in composing a piece was to create some melodic material in
the motive windows (Figure 5-5). The window’s vertical axis represented pitch
(spanning two octaves), and the horizontal axis represented time. The windows
could be stretched or shortened depending on the length of the motive. Purple
droplets represented notes, and users added them by clicking on the grid. Blank
spaces were interpreted as rests.

The user could then choose a color for each motive and compose a piece by
selecting a pen color and drawing into a sketch window. Every time the user
drew a line of a particular color, Hyperscore would insert the motive mapped to
that color into the piece. The start and end points of the line determined how
many times a motive repeated, and a fixed pixel-to-duration metric calculated
the length of time a line would play. If the length of a line did not divide evenly
into whole repetitions of a motive, then a fragment of the motive was used for
the last iteration.

Drawing a straight line would make the motive repeat with the precise melodic
intervals of the original motivic material. The vertical position determined
how much the motive was transposed up or down. Curves and bends in the
line imposed a pitch envelope on the motive’s repetitions but did not alter the
melodic contour to the point that the new material was unrecognizable from
the original motive (Figure 5-6). Lines could be reshaped by right-clicking and
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Figure 5-5: A motive window and sketch window with lines drawn in the color associated with
the motive.

then dragging. Other editing features included cutting and pasting, changing
instrumentation, and increasing or decreasing playback volume.

Figure 5-6: Musical realization of the Hyperscore piece shown in Figure 5-5.

The lines drawn into a sketch window combined to form larger, multi-voiced
segments of music. These lines could communicate a musical gesture when
effectively interwoven and overlapped. Hyperscore was able to facilitate com-
position by providing a visual representation of the large-scale structure of a
piece and simplifying the process of integrating musical material. This repre-
sentation provided high-level control over the dramatic arc of the piece as a
whole as well as the placement of individual motivic elements.

As in previous versions, all sound output was in MIDI format, and either the
computer’s sound card or an external MIDI synthesizer acted as the output de-

5.3. FINAL HYPERSCORE VERSION 99



vice. Users could also save Hyperscore pieces as MIDI files, a standard format
that could be read into any notation program such as Finale or Sibelius. This
made it straightforward to go from Hyperscore format to musician-readable for-
mat, giving a composer the option of sketching out a composition in Hyperscore
and then editing in standard notation.

Version TS addressed harmony in two different ways. In the simplest case,
harmony could be a single chord without a reference point and without regard
to what preceded or followed it. Users could add individual chords consisting of
three simultaneous voices to the sketch window. They were displayed as colored
droplets, with each color representing a different harmony type: major, minor,
augmented, diminished, and so forth (Figure 5-7). The second type of harmony
control utilized what used to be the tension line in previous versions. While
the idea of an all-purpose tension line was never fully realized in Version TS, a
tension line that focused on a single parameter—harmony—was implemented
instead.

Figure 5-7: Colored droplets representing individual chords. The colors were mapped to different
chord qualities.

5.3.1 Harmonic tension line

One reason for having a graphical notation system in the form of freehand
drawing was to provide the user with an expressive means of shaping musical
direction. Drawing a contour is a simple and intuitive way to depict areas of
harmonic tension and resolution.

The algorithm for this new “harmony line” was based in part on David Cope’s
Experiments in Musical Intelligence (EMI). EMI takes existing works in a given
style, segments them into musical fragments and then reconstitutes them in an
intelligent way to form new pieces in the same style. Cope likens it to a ver-
sion of Musikalishes Würfelspiel (musical dice game), an eighteenth century
piece attributed to Mozart consisting of sixty-four bars of musical material that
are randomly put together to form a coherent whole. EMI creates a data-
base from existing music by performing functional analysis based on ideas from
Schenkerian analysis, and then generates new music using this database.
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EMI’s musical input consists of events that describe the note attributes of pitch,
timing, duration, dynamic, and channel (MIDI events). A database of musi-
cal fragments is created by analyzing and segmenting the music. The analysis
process uses a classification system of functional identifiers called SPEAC (for
Statement, Preparation, Antecedent, and Consequent). Pattern matching is
used to determine what recurring signatures should not be segmented; it is im-
portant that certain signatures remain intact because they are necessary for the
stylistic identity of the music. The segments are then placed in a lexicon ac-
cording their SPEAC meaning. New music is generated by using an augmented
transition network (ATN) to recombine musical segments from the database.4

Some of the musical works generated by EMI are extremely convincing. The
very best examples are not easy to differentiate from the representative works
they are intended to emulate. Cope believes his EMI system paralleled what
takes place at some level in composers’ minds, whether consciously or sub-
consciously: “The genius of a great composer, I believe, lies not in inventing
previously unimagined music but in their ability to effectively reorder and refine
what already exists.” [Cope, 1996]

Cope’s idea of classifying functional identifiers directly influenced the algorithm
for interpreting Hyperscore’s harmony line. In Hyperscore, users described har-
monic progressions by shaping the harmony line. It was parsed into sections
[Pasztor, 2002] which were then mapped to functional identifiers that resembled
SPEAC. Hyperscore’s identifiers had been modified from Cope’s, and consisted
of four categories: Statement, Antecedent, Consequent, and Modulation. The
harmony line running through the center of each sketch window could be mod-
ified by clicking and dragging. Color bands would appear to indicate the line’s
parsing (Figure 5-8). Sections were classified as one of four visual types, each
corresponding to a functional identifier:

• Statement - flat section, colored white. Musically defined as a statement
or prolongation of the tonic.

• Antecedent - upward-sloping section, colored green. Musically defined
as a combination of chords that need resolution (e.g. dominant chords or
combinations of subdominant and dominant chords).

• Consequent - downward-sloping section, colored blue. Resolution of
preceding Antecedent section. If not preceded by an Antecedent, then
restates the tonic.

• Modulation - defined by a sharp pointed region or spike, colored yellow.
Progression toward a new key.

4ATNs are used in natural language processing to construct grammatical sentences. They
are context free grammars with an extension that defines constituents by a set of features,
allowing aspects of natural language such as agreement and subcategorization to be handled
in an intuitive and concise way [Allen, 1995].
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Figure 5-8: An empty Hyperscore sketch window showing the harmony line. The height or depth
of the point indicates the key to which the section modulates (indicated by the text overlay).

After the line was parsed, chords were assigned to each section based on its
functional identifier, how many beats it spanned, and how textured the section
was (i.e. how bumpy it was). The instability of the chords assigned to a section
was directly proportional to the amount of texture. The chords chosen were
taken from a database that returned either single chords or small progressions
based on the selection criteria. The database consisted of chord progressions
commonly found in Bach chorales.

When the chords were chosen for the entire piece, the notes generated from the
sketch were altered so that they matched either the currently assigned chord or
a scale tone in the current key. For minor keys, there were special provisions
for inserting a raised 6̂ or 7̂ depending on the chord and context. There were
several criteria used in deciding how and in what direction a pitch was altered:

• Beat - If a pitch fell on a beat or was longer than a sixteenth note in
duration, it would be harmonized as a chord tone. If it was short in
duration and did not fall on a beat, it would be harmonized as a scale
tone.5

• Contour - Notes were moved up or down as minimally as possible while
attempting to preserve the contour of the original melodic material. Even
if the original pitch was a valid chord tone before being harmonized, it
might still be altered if it distorted the overall melodic contour.

5This metric heavily favors minimization of nonharmonic tones and was a deliberate deci-
sion given the requirements of the Toy Symphony project.
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• Voice - The voice determined to be the bass line did not have the strict
melodic contour requirements and could be altered radically to fit not just
the nearest chord tone, but the bass note of the chord (root or inversion).
This did not apply in the case when there was only a single active line (a
solo voice).

Users chose from four harmony styles: none, diatonic, major-minor, and fourths.
“None” meant that no automatic harmonization was applied. Diatonic mode
changed all chromatic pitches into diatonic ones in the current key (defined by
the presence of Modulation sections in the harmony line). Major-minor was
eighteenth-century-style tonal harmony. Fourths mode was based on chords
constructed from fourths rather than thirds. Although fourths mode used the
same database as major-minor mode, some of the chord root notes were altered
to fit the functional identifiers more closely. For example, the fourths-mode
equivalent to a dominant seventh chord was a chord built on the leading tone,
giving it a stronger pull toward the tonic.

Figures 5-11 and 5-12 show different harmonic realizations of the first section of
the Hyperscore piece shown in Figure 5-9. Aside from a complete harmonization
done with regard to a harmonic progression generated from the harmony line,
there was an additional option of selecting any subset of the lines drawn in
the sketch window to be unharmonized within the current tonal context. This
selection was indicated visually by giving the line color a darker tint. The
effect of unharmonizing individual lines did not revert the line to its original
chromatic form—it altered all necessary pitches to correspond to scale tones in
the current key rather than chord tones (Figure 5-13).

Figure 5-9: Example of a Hyperscore piece that has been harmonized.
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(a) Red motive (b) Purple motive (c) Blue motive

(d) Light green motive (e) Dark green motive

Figure 5-10: Musical realizations of motives in Figure 5-9.

5.4 The future of Hyperscore

There are many additional features that should be implemented in the future
if Hyperscore is to realize its full potential as a tool to aid both novices and
professionals in composing music. One major change would be to allow direct
editing at the individual note level within the sketch window as opposed to
permitting such changes only through altering motives or inaccurately bending
lines. The algorithm for parsing the harmony line needs to be improved in order
to allow more precise control. Adding external methods of inputting motivic
material—both in audio and MIDI formats—would also be useful.

Another idea is a reverse Hyperscore, where the input is a piece of music (in
MIDI format, for example) and the output is a Hyperscore rendering. This
would be a far more difficult task than the current graph-to-music approach.
There would need to be some concrete method of breaking down a piece into ba-
sic motivic elements, perhaps by doing a statistical analysis of recurring rhyth-
mic, melodic, and harmonic patterns. This process would be greatly assisted
by a special type of line (perhaps colored a neutral gray) that would allow the
addition of musical material that is not associated with a motive. After all,
while much of music consists of recurring motives, not all of it does. This is a
flaw in the current Hyperscore paradigm that needs to be fixed.

5.5 A new tension line

Harkening back to the original idea of a general tension line, such a feature
incorporated into Hyperscore could be a powerful tool for helping users analyze
and compose music. It would be difficult to implement, but having a model
like the one presented in this thesis is a significant start. The greatest bar-
rier would be the implementation of the theoretical background necessary to
quantify individual parameters such as harmony. For example, it would be an
extensive project to implement Lerdahl and Jackendoff’s generative theory of
music (particularly the prolongational reduction) in order to correctly quantify

104 CHAPTER 5. APPLICATIONS



11

11

11

11

11

11

11

11

11

5.5. A NEW TENSION LINE 105



19

19

19

19

19

19

19

19

19

26

26

26

26

26

26

26

26

Figure 5-11: The unharmonized musical realization of the Hyperscore piece shown in Figure
5-9.
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Figure 5-12: Musical realization of the harmonized Hyperscore piece shown in Figure 5-9.
Roman numerals indicate the chords generated by the harmony line.
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chord distances according to Lerdahl’s tonal tension model. Assuming this part
of the analysis has been implemented or some acceptable substitutes have been
found, the actual functionality of the tension model within Hyperscore would
be manifested in not just a single tension line, but multiple tension lines.

These tension lines would be present not in the center of the sketch window,
but rather as separate detachable windows that could be applied as a global
modifier to any Hyperscore sketch window. These lines would either be viewed
individually or as a single line representing the output of the global tension
model given the individual parameters of harmony, melodic contour, loudness,
pitch height, tempo, and onset frequency. This line could at any point be
separated into its component parts again. The individual lines as well as the
global line could be modified, resulting in Hyperscore recomposing or adding
new material based on the material the user has already produced.

As in Version 1, the result of this process would not be deterministic, but
produce a result that can either be kept by the user or thrown out. The user
could then request more new material without changing any of the current
parameters. One practical application of this would be, for example, creative
assistance—perhaps a user is looking for some new ideas or is dissatisfied with
a particular section and cannot see a clear way to improve it. Being able to see
the musical material objectively analyzed and presented in a high-level manner
might clarify any problems. The musical parameters (either individually or
in any combination) could then be modified to fit the composer’s vision more
accurately. If that weren’t enough, the program would be able to step in and
produce interesting new musical material within the given framework.
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CHAPTER SIX

Conclusions

“Et le chemin est long du projet à la chose.”

– Jean-Baptiste Poquelin Molière

6.1 Summary

A quantitative, parametric model for describing how listeners perceive changes
in musical tension was presented. The model takes into account multiple, dis-
parate musical features and is based directly on empirical evidence. As a quan-
titative model, it provides a foundation for implementation and incorporation
into computer-based applications like Hyperscore.

6.1.1 Experimental results

Previous studies have shown that there are numerous parameters which con-
tribute to a listener’s response to music. Some of these are expressive features
like dynamics and tempo; others are learned from listening to music specific
to one’s culture. In the latter category are ordered hierarchical relationships
involving pitch, harmony, and tonality. The model presented in this thesis takes
into account features in both categories and formalizes how they reinforce or de-
tract from a listener’s perception of tension. Due to the complex and subjective
nature of tension, the model, by necessity, is based on empirical data.

Two experiments with contrasting approaches were described. Experiment 1
was a web-based study designed to collect data from thousands of subjects
from all over the world. Subjects were asked to listen to musical excerpts and



then indicate how they felt the tension was changing by choosing from nine
possible tension curves depicted by line graphs. Experiment 2 collected subject
responses to tension in real time. Subjects were asked to move a slider on
a computer interface to indicate how they felt tension was changing as they
listened.

Most of the musical excerpts used in the experiments were composed expressly
for the studies. In addition to these examples, several excerpts from the classical
repertoire were also selected (from pieces by Bach-Vivaldi, Beethoven, Brahms,
and Schönberg). Musical excerpts composed specifically for the studies were de-
signed to isolate and combine changes in harmony, melodic expectation, pitch
height, tempo variation, onset frequency, dynamics, and rhythmic irregularity.
Some examples consisted of a single feature changing over time in a continu-
ous and straightforward manner, while others included two or more features
either in concert or opposition to one another. The examples were carefully
composed so that interference from other variables would be easily detected if
not completely absent.

Analysis of data from Experiment 1 clearly demonstrated that listeners’ percep-
tion of tension was influenced by all features considered with the exception of
rhythmic irregularity. While pitch height appeared to have the strongest effect,
that might have been a consequence of the obvious mapping of curve shape to
melodic contour. Onset frequency appeared to be the weakest factor, particu-
larly when opposed by other features. However, in general, it was difficult to
provide a precise ordering for the relative influence of each individual feature
on tension. To make it absolutely clear that musical features were changing
in one “direction” or another, the examples were short and exhibited exagger-
ated changes. It is appears that the obviousness of how a feature was changing
(salience) directly contributed to its overall influence. Although pitch height
seems to have had the strongest effect, subjects’ responses might have been sig-
nificantly different had the changes been more subtle. Nonetheless, the results
of Experiment 1 confirmed that the parameters considered were in fact legiti-
mate and that changes in these parameters resulted in changes in tension. The
analysis of data collected in Experiment 2 proceeded from this confirmation.

6.1.2 The model

All of the excerpts used in Experiment 2 were described quantitatively in terms
of how the individual musical features were changing. All of the features con-
firmed in Experiment 1 were included. Onset frequency and tempo were treated
as separate parameters, and one new feature, melodic expectation, was also
added. Three theoretical models—Lerdahl’s tonal tension model, Jehan’s psy-
choacoustic loudness model, and Margulis’ melodic expectation model—were
utilized to describe the multidimensional features of harmonic tension, loud-
ness, and melodic expectation. These models were assumed to accurately rep-
resent their respective parameters. Tempo, onset frequency, and pitch height

112 CHAPTER 6. CONCLUSIONS



are one-dimensional features that were straightforward to quantify and did not
require external sources of description.

A new model was implemented that mathematically described and predicted
how listeners perceived tension in excerpts from Experiment 2 given the descrip-
tions of the individual musical parameters. Linear and polynomial regression
was performed using the first half to three-quarters of each excerpt as training
data. The last part of the excerpt was left to test the predictive capabilities of
the model. The degree to which the model fit this last part (the out-of-sample
data) was a strong indicator of its accuracy.

Results of the regression analysis showed that in many cases, a linear model was
adequate. However, there were some cases where a polynomial model provided
a better fit, though there was some risk of overfitting. Given these results, it
appears that a simple nonlinear model is sufficient to capture the complexities
of the tension model.

One general issue that needs to be considered is the fact that the training
data was probably not sufficient to thoroughly “learn” all of the necessary in-
teractions between the parameters. This problem was more acute for shorter
examples, where the brief time-span of musical events covered by the train-
ing data did not contain the amount of information needed to predict future
changes.

6.1.3 Musicians vs. non-musicans

The results of comparing responses of musically inexperienced and musically
experienced subjects in both experiments indicated that experienced musicians
have a greater sensitivity to harmony in particular. This was clearly evident in
Experiment 1, where there was a significant statistical difference between how
musicians and non-musicians responded. Results from the first experiment also
indicated that musicians are more responsive to onset frequency and changes
in tempo than non-musicians.

6.1.4 Applications

Hyperscore, a computer-assisted composition system, was described and dis-
cussed. The incorporation of a tension model into future versions of Hyperscore
would add powerful new capabilities to the application. Such a model could
provide users with high-level feedback about their music and could be used in
a generative format, allowing composers to make high-level changes that ei-
ther affect individual musical parameters directly or affect all of them together
through a global tension line.
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6.2 Discussion

In the course of examining and analyzing the data from Experiments 1 and
2, there were a number of problems that came to light. Generally speaking,
there was a lack of examples that allowed the quantification of features with
respect to their salience in Experiment 1. The only feature that had examples
addressing this issue was pitch height. Even there, additional variables made
the comparisons less straightforward. In future experiments, examples should
be composed such that different quantities of change in loudness, tempo, or
harmony can be assessed. For example, given an example where the tempo
increases to twice the original speed, there ought to be at least two more ex-
amples that increase at different ratios of the original tempo (e.g. 1.5 and 4).
In this way, the thresholds for perceiving significant changes can be evaluated
systematically.

On a completely different note, there was so much data collected in Experiment
1, that not all of it could be analyzed. There still lies much to be discovered
given the detailed surveys the subjects filled out. It would be particularly
interesting to see if subjects from Western countries responded differently from
non-Western ones. Careful sorting would have to be done based on musical
background as well as country of origin in order to determine how much a
subject has been influenced by Western music.

In Experiment 2, one of the most problematic issues was the considerable free-
dom given to the subjects in how they moved the slider in response to the stim-
uli. In retrospect, there should have been stronger constraints on where the
subjects started on the slider and perhaps even where they ended. Although
normalization methods were employed to correct these problems to some extent,
it goes without saying that more consistent responses result in more accurate
analyses.

Perhaps the most successful experimental format would combine the best fea-
tures of Experiments 1 and 2. The results of Experiment 2 would have been
much stronger with more subject data. While having thousands of subjects (as
was the case for Experiment 1) for this type of study might seem implausible, it
is possible, if difficult, from a technical point of view to collect real-time slider
responses to musical stimuli in a web-based setting. The biggest problem would
be the lack of an observer to instruct the subject and monitor the test. How-
ever, one might argue that with thousands of data sets, it might not matter so
much.

Assuming there were significantly more subjects for a study like Experiment 2
(maybe not thousands, but at least hundreds), the possibility of coming up with
a model that is truly universal could be possible. More subjects would make
it possible to add more test examples. There are so many parameters being
considered, that 10 excerpts are insufficient to cover enough changes and inter-
actions between permutations of features required for a successful prediction.
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Given a large number of examples designed to cover as many varying situations
as possible, subjects would respond to only a subset of the possible examples,
as in Experiment 1. In retrospect, even with only 35 subjects, it might have
been better to use this type of method for Experiment 2.

6.3 Contributions

In conclusion, the contributions offered by this thesis include the following:

• A web-based study that successfully collected data from thousands of
subjects and offers a new paradigm for gathering large amounts of data
in music cognition experiments.

• A model of musical tension that takes into account expressive features as
well as purely musical ones.

• An approach that considers both linear and nonlinear models derived
entirely from empirical data.

• A computer-based application (Hyperscore) that could be used as a plat-
form for the model.

6.4 Future directions and final remarks

Perhaps the most significant feature missing from the list of parameters consid-
ered for the tension model was timbre. While there were different instrumental
sounds used in the experiments, they were there merely for control purposes. It
would be interesting to see if timbral features such as brightness and roughness
are as influential as harmony or tempo in determining listeners’ perception of
tension.

Another feature that ought to be considered is meter. Although there were a
few examples dealing with meter in Experiment 1, they were not very successful
in gauging the effect on listeners’ perception of tension (Figure 6-1 shows one
such example). Furthermore, they were purely experimental examples thrown
in considerably after the data collection process began. In any case, the per-
ception of meter and its influence on other musical structures are so intricately
intertwined that it might not be possible to isolate it as a parameter in the
same way other features were tested in Experiment 1. Given that there is a
large body of literature on perception of meter and other rhythmic structures,
there might already be existing research beyond the scope of this thesis that
sheds light on these issues (see [Hasty, 1997] for references).
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Figure 6-1: Example from Experiment 1 showing meter changes.

As discussed, the implementation of the tension model within Hyperscore is
a clear next step; it would, in a sense, employ the model in a “real-world”
situation. The greatest difficulty would lie in implementing the theoretical
background necessary to quantify individual parameters like harmony. Regard-
less, the model could still be implemented with a simpler (or even user-defined)
measure of harmonic tension.

In conclusion, it is doubtful that our understanding of music perception will
ever be complete. The work described here is just a small piece of the greater
puzzle—a piece already complex and difficult to assess in itself. Nevertheless,
it is at least a small step in the right direction toward understanding our per-
ception and enjoyment of music.
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APPENDIX A

Musical excerpts from
Experiment 2

Figure A-1: Q01 (Composed for the experiment by the author.)

rit.

Figure A-2: Q02 (Composed for the experiment by the author.)

Figure A-3: Q03 (Excerpt from Beethoven’s First Symphony.)

Figure A-4: Q04 (Composed for the experiment by the author.)
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Figure A-5: Q05 (Excerpt from Bach’s organ transcription of Vivaldi’s C major concerto.)
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accelerando

Figure A-6: Q06 (Composed for the experiment by the author.)

Figure A-7: Q07 (Composed for the experiment by the author.)

Mässige

5

5

Figure A-8: Q08 (Excerpt from Schönberg’s Klavierstück, Op. 11, No. 1.)

rit.

Figure A-9: Q09 (Composed for the experiment by the author.)
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Figure A-10: Q10 (Excerpt from Brahm’s Piano Concerto No. 2.)
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APPENDIX B

Feature analysis from
Experiment 2

Figure B-1: Graph showing onset frequency values over time of Q10 (Brahms excerpt).

Figure B-2: Graph showing pitch height graph of Q10 (Brahms excerpt).

Figure B-3: Harmonic tension graph of Q10 (Brahms excerpt). The x-axis represents time, and
the y-axis, tension values.
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Chords i j k Inherited
Scale

degree
Inversion

Non-

harmonic

tones

TOTAL

d(1,2) ii7-V7 0 1 5 6 6 1 0 1 14 d(1,2)

d(2,29) V7-V 0 0 1 1 5 1 0 1 8 d(2,29)

d(3,2) VI-V7 0 2 7 9 6 1 0 6 22 d(3,2)

d(4,6) ii7-III 0 2 7 9 15 1 0 1 26 d(4,6)

d(5,4) ivb5-ii7 0 3 6 9 24 1 0 0 34 d(5,4)

d(6,2) III-V7 0 3 6 9 6 1 0 0 16 d(6,2)

d(7,6) III6-III 0 0 0 0 15 0 2 0 17 d(7,6)

d(8,6) VI6-III 0 1 4 5 15 0 2 0 22 d(8,6)

d(9,8) III-VI6 0 1 4 5 20 1 0 0 26 d(9,8)

d(10,11) bII-bII64 0 0 0 0 28 1 0 6 35 d(10,11)

d(11,8) bII64-VI6 0 1 7 8 20 1 2 0 31 d(11,8)

d(12,14) VI6-V/V 1 1 8 10 14 0 2 0 26 d(12,14)

d(13,12) III-VI6 0 1 4 5 24 1 0 0 30 d(13,12)

d(14,2) V/V-V7 1 1 6 8 6 1 0 0 15 d(14,2)

d(15,14) V65/V-V/V 0 0 1 1 14 1 2 1 19 d(15,14)

d(16,17) ii7-V7 0 1 5 6 6 1 0 1 14 d(16,17)

d(17,2) V7-V7 0 0 0 0 6 1 0 1 8 d(17,2)

d(18.17) VI-V7 0 2 7 9 6 1 0 6 22 d(18.17)

d(19.17) iv6b5-V7 0 2 7 9 6 1 2 0 18 d(19.17)

d(20,21) V7/III-III7 0 1 5 6 26 1 0 1 34 d(20,21)

d(21,22) III7-VI7 0 1 5 6 20 1 0 1 28 d(21,22)

d(22,23) VI7-ii7 0 1 7 8 12 1 0 4 25 d(22,23)

d(23,17) ii7-V7 0 1 5 6 6 1 0 1 14 d(23,17)

d(24,25) V7-VI6 0 2 7 9 15 1 0 1 26 d(24,25)

d(25,17) VI6-V7 0 2 7 9 6 1 2 0 18 d(25,17)

d(26,25) VI64-VI6 0 0 0 0 15 1 2 0 18 d(26,25)

d(27,28) ii65-V4 0 2 4 6 6 1 2 1 16 d(27,28)

d(28,29) V4-V 0 0 1 1 5 0 0 3 9 d(28,29)

d(29,51) V-i 0 1 4 5 0 0 0 0 5 d(29,51)

d(30,29) V7-V 0 0 1 1 5 1 0 7 14 d(30,29)

d(31,29) VI6-V 0 2 6 8 13 0 2 0 23 d(31,29)

d(32,34) V-i6 (c min) 0 1 4 5 21 1 0 0 27 d(32,34)

d(33,34) VI-i6 (c min) 0 3 4 7 21 1 0 0 29 d(33,34)

d(34,31) v6-VI6 0 2 6 8 13 0 2 0 23 d(34,31)

d(35,34) iv-V (c) 0 1 4 5 21 1 0 0 27 d(35,34)

d(36,42) V/V-V 1 1 5 7 5 0 0 0 12 d(36,42)

d(37,38) i-VI6 (g) 0 3 4 7 23 1 0 0 31 d(37,38)

d(38,36) I/Bb-V/cm 1 3 7 11 12 0 2 0 25 d(38,36)

d(39,40) vii-i 0 2 6 8 10 1 0 0 19 d(39,40)

d(40,42) i-i 0 1 4 5 5 0 0 0 10 d(40,42)

d(41,42) vii7/V-V (f) 0 2 8 10 5 1 0 1 17 d(41,42)

d(42,29) V-V 0 0 0 0 5 1 0 0 6 d(42,29)

d(43,48) VI-V9 0 2 7 9 7 1 0 0 17 d(43,48)

d(44,45) vii65-iii (Ab) 0 1 5 6 24 1 2 1 34 d(44,45)

d(45,43) iii-IV (Ab) 0 2 6 8 16 1 0 0 25 d(45,43)

d(46,47) i65-iv 0 1 5 6 23 1 2 1 33 d(46,47)

d(47,43) iv-VI 0 3 4 7 16 1 0 0 24 d(47,43)

d(48,42) V9-V9 0 0 2 2 5 1 0 4 12 d(48,42)

d(49,50) iv7-V9 0 2 7 9 7 1 0 0 17 d(49,50)

d(50,51) V9-i 0 1 6 7 0 1 0 4 12 d(50,51)

d(51,0) i 0 0 0 0 0 0 0 0 0 d(51,0)

d(52,51) vii7-i 0 2 7 9 0 1 0 1 11 d(52,51)

d(53,51) i-i 0 0 0 0 0 0 0 0 0 d(53,51)

d(54,53) vii7-i 0 2 7 9 0 1 0 1 11 d(54,53)

d(55,51) i-i 0 0 0 0 0 1 0 0 1 d(55,51)

d(56,57) V65-I 0 1 5 6 9 1 2 1 19 d(56,57)

d(57,55) V/III-i 0 2 7 9 0 1 0 0 10 d(57,55)

d(58,59) III65-VI 0 1 5 6 7 1 2 1 17 d(58,59)

d(59,55) VI-i 0 3 4 7 0 1 0 0 8 d(59,55)

d(60,59) VI2-VI 0 0 1 1 7 1 2 1 12 d(60,59)

d(61,59) iv-VI 0 3 4 7 7 1 0 0 15 d(61,59)

d(62,61) iv2-iv 0 0 1 1 14 1 2 1 19 d(62,61)

d(63,66) ii-V 0 1 4 5 5 1 0 0 11 d(63,66)

d(64,63) ii2-ii 0 0 1 1 10 1 2 1 15 d(64,63)

d(65,66) vii65-V 0 3 5 8 5 1 2 1 17 d(65,66)

d(66,51) V-i 0 1 4 5 0 0 0 0 5 d(66,51)

Figure B-5: Chart showing harmonic tension calculations of Q10 (Brahms excerpt). δ is the
sum of i, j, and k.

123



3
3 3

3

3 3 3

s1    6                       6       4     4        4       4      4     5        5        6                   2         2       4                         5      5    4                   5          5      5                    4    4

m1  1                       1        1     1        1      1      1     1        1        1                    1         1       1                        1      1    1                    1         1     2/3                   1    1

p1   1                      0.02  0.25  12    0.01  0.25 20    9       0.25   25                0.02    0.25    36                    0.01    6    16                0.02    0.25  24                 0.01  0.25

d1   0                       0       75    0       12    75    75    0        36     75                   6        75     75                      20    75    0                    6       75     0                     0    75

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

i      0.12                  1.5    123  0.04  13    155  111  1.25   161    75.12              6.5    147   75.04                  50   155   0.08              7.25  195  0.033               1   155

s2     6                                        4                       4                         6                                       4                                         4                                    5

m2   1                                        1                       1                         1                                       1                                         1                                    1

p2    1                                       16                     12                       36                                     32                                       32                                   36

d2    0                                        0                       6                        12                                      0                                        12                                   12

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

j       6                                       64                     54                      228                                   128                                     140                                 192

15i+5j______

20
2                      1    92    16  10  116  97    1   121   113                5   110   88                 38   116  35                5  146  48               1    116

Figure B-6: First page of analysis showing how melodic expectation values are calculated for
Q10 (Brahms excerpt). i values consist of direct note-to-note level expectations, and j values
consist of high-level patterns based on salience and metrical placement. s represents stability
ratings, m represents mobility ratings, p represents proximity ratings, and d represents direction
ratings. The values between the two staves are the final melodic expectations ratings for each
note.

Figure B-7: Melodic expectation graph for Q10 (Brahms excerpt).

Figure B-8: Loudness curve of Q10 (Brahms excerpt). The blue line is the perceived loudness
in dB produced by Jehan’s psychoacoustic model, and the red line is the smoothed version used
for the feature graph in the analysis of Experiment 2.
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